27 research outputs found

    Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples

    Get PDF
    Background: Breast cancer is a complex and heterogeneous disease that is usually characterized by histological parameters such as tumor size, cellular arrangements/rearrangments, necrosis, nuclear grade and the mitotic index, leading to a set of around twenty subtypes. Together with clinical markers such as hormone receptor status, this classification has considerable prognostic value but there is a large variation in patient response to therapy. Gene expression profiling has provided molecular profiles characteristic of distinct subtypes of breast cancer that reflect the divergent cellular origins and degree of progression.Methods: Here we present a large-scale proteomic and transcriptomic profiling study of 477 sporadic and hereditary breast cancer tumors with matching mRNA expression analysis. Unsupervised hierarchal clustering was performed and selected proteins from large-scale tandem mass spectrometry (MS/MS) analysis were transferred into a highly multiplexed targeted selected reaction monitoring assay to classify tumors using a hierarchal cluster and support vector machine with leave one out cross-validation.Results: The subgroups formed upon unsupervised clustering agree very well with groups found at transcriptional level; however, the classifiers (genes or their respective protein products) differ almost entirely between the two datasets. In-depth analysis shows clear differences in pathways unique to each type, which may lie behind their different clinical outcomes. Targeted mass spectrometry analysis and supervised clustering correlate very well with subgroups determined by RNA classification and show convincing agreement with clinical parameters.Conclusions: This work demonstrates the merits of protein expression profiling for breast cancer stratification. These findings have important implications for the use of genomics and expression analysis for the prediction of protein expression, such as receptor status and drug target expression. The highly multiplexed MS assay is easily implemented in standard clinical chemistry practice, allowing rapid and cheap characterization of tumor tissue suitable for directing the choice of treatment

    Rapid and facile purification of apolipoprotein A-I from human plasma using thermoresponsive nanoparticles

    Get PDF
    Nanoparticles can be used to purify proteins from plasma. We report here the purification of apolipoprotein A-I (apoA-I) with high specificity from human plasma using copolymeric nanoparticles. We present an optimized protocol using 50:50 NiPAM:BAM copolymer nanoparticles with thermo-responsive properties as an affinity resin. Repeated pelleting and washing of nanoparticle-captured apoA-I is achieved through temperature cycling. The protein is then eluted using urea followed by an ion exchange step for protein concentration and depletion of nanoparticle

    IgG and fibrinogen driven nanoparticle aggregation

    Get PDF
    A thorough understanding of how proteins induce nanoparticle (NP) aggregation is crucial when designing in vitro and in vivo assays and interpreting experimental results. This knowledge is also crucial when developing nano-applications and formulation for drug delivery systems. In this study, we found that extraction of immunoglobulin G (IgG) from cow serum results in lower polystyrene NPs aggregation. Moreover, addition of isolated IgG or fibrinogen to fetal cow serum enhanced this aggregation, thus demonstrating that these factors are major drivers of NP aggregation in serum. Counter-intuitively, NP aggregation was inversely dependent on protein concentration; i.e., low protein concentrations induced large aggregates, whereas high protein concentrations induced small aggregates. Protein-induced NP aggregation and aggregate size were monitored by absorbance at 400 nm and dynamic light scattering, respectively. Here, we propose a mechanism behind the protein concentration dependent aggregation; this mechanism involves the effects of multiple protein interactions on the NP surface, surface area limitations, aggregation kinetics, and the influence of other serum proteins.We thank Professor Sara Linse for scientific discussions and advice and Professor Patrik Brundin for enabling access to the light microscope. The project received financial support from Nanometer structure consortium at Lund University (nmC@LU), Lars Hierta Foundation, and the research school FLAK of Lund University

    Structure and distribution of alpha-1-microglobulin proteins

    No full text
    This thesis describes studies of the structure and tissue distribution of alpha-1-microglobulin (a1-m), a member of the lipocalin protein superfamily with immunosuppressive properies. It was shown that a1-m appears in human plasma in five major forms. These were identified as monomeric a1-m and covalent complexes between a1-m and IgA, prothrombin, albumin and a1-m. In addition to blood, both monomeric-, and high molecular weight forms of a1-m were present in tissues. The liver, kidney and heart contained a series of a1-m isoforms with apparent molecular masses between 40 kDa and 50 kDa, which were not present in plasma. Immunohistochemical analysis of human tissue demonstrated intracellular labeling of a1-m in hepatocytes and in the proximal epithelial cells of the kidney. In addition, a1-m immunoreactivity was detected in the interstitial connective tissue of heart, lung and in the adventitia of blood vessels as well as on cell surfaces of cardiocytes. a1-m mRNA was detected only in the liver and pancreas. This suggests that the protein found in other tissues is not synthesized locally, but transported to the tissues via the bloodstream from the production sites in liver and pancreas. a1-m was found in placenta particularly at sites of syncytiotrophoblast injury. Thus, ?tissue a1-m? may act as a local immunosuppressive barrier in the placenta, protecting the chorionic villi from the immune system of the mother. a1-m is yellow-brown. Colored tryptic peptides of a1-m were purified, and it was shown that the side chains of Lys92, Lys118 and Lys130 in these peptides carried size heterogeneous covalently attached groups with molecular masses beetween 106 and 282 Da. The fluorescence properties and molecular modeling suggested that the chromophores were most likely buried and closely spaced in the interior of the protein. Only the free a1m carried colored groups, whereas the a1m linked to IgA was uncolored

    myo-Inositol monophosphatase is an activated target of calbindin D28k.

    No full text
    Calbindin D28k (calbindin) is a member of the calmodulin superfamily of Ca2+ -binding proteins. An intracellular target of calbindin was discovered using bacteriophage display. Human recombinant calbindin was immobilized on magnetic beads and used in affinity purification of phage-displayed peptides from a random 12-mer peptide library. One sequence, SYSSIAKYPSHS, was strongly selected both in the presence of Mg2+ and in the presence of Ca2+. Homology search against the protein sequence data base identified a closely similar sequence, ISSIKEKYPSHS, at residues 55-66 in myo-inositol-1(or 4)-monophosphatase (IMPase, EC 3.1.3.25), which constitute a strongly conserved, and exposed region in the 3D structure. IMPase is a key enzyme in the regulation of the activity of the phosphatidyl inositol signaling pathway. It catalyzes the hydrolysis of myo-inositol-1(or 4)-monophosphate to form free myo-inositol, maintaining a supply that represents the precursor for inositol phospholipid second messenger signaling systems. Fluorescence spectroscopy showed that isolated calbindin and IMPase interact with an apparent equilibrium dissociation constant, KD, of 0.9 mM. Both apo and Ca2+-bound calbindin was found to activate IMPase up to 250-fold, depending on the pH and substrate concentration. The activation is most pronounced at conditions which otherwise lead to a very low activity of IMPase, i.e. at reduced pH and at low substrate concentration

    Ca 2+

    No full text

    alpha(1)-Microglobulin: a yellow-brown lipocalin

    No full text
    alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo

    Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties.

    No full text
    alpha(1)-Microglobulin is a 26-kd protein, widespread in plasma and tissues and well-conserved among vertebrates. alpha(1)-Microglobulin belongs to the lipocalins, a protein superfamily with highly conserved 3-dimensional structures, forming an internal ligand binding pocket. The protein, isolated from urine, has a heterogeneous yellow-brown chromophore bound covalently to amino acid side groups around the entrance of the lipocalin pocket. alpha(1)-Microglobulin is found in blood both in free form and complex-bound to immunoglobulin A (IgA) via a half-cystine residue at position 34. It is shown here that an alpha(1)-microglobulin species, which we name t-alpha(1)-microglobulin (t = truncated), with a free Cys34 thiol group, lacking its C-terminal tetrapeptide, LIPR, and with a more polar environment around the entrance of the lipocalin pocket, is released from IgA-alpha(1)-microglobulin as well as from free alpha(1)-microglobulin when exposed to the cytosolic side of erythrocyte membranes or to purified oxyhemoglobin. The processed t-alpha(1)-microglobulin binds heme and the alpha(1)-microglobulin-heme complex shows a time-dependent spectral rearrangement, suggestive of degradation of heme concomitantly with formation of a heterogeneous chromophore associated with the protein. The processed t-alpha(1)-microglobulin is found in normal and pathologic human urine, indicating that the cleavage process occurs in vivo. The results suggest that alpha(1)-microglobulin is involved in extracellular heme catabolism. (Blood. 2002;99:1894-1901
    corecore