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Proteomic analysis of breast tumors
confirms the mRNA intrinsic molecular
subtypes using different classifiers: a large-
scale analysis of fresh frozen tissue samples
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Abstract

Background: Breast cancer is a complex and heterogeneous disease that is usually characterized by histological
parameters such as tumor size, cellular arrangements/rearrangments, necrosis, nuclear grade and the mitotic index,
leading to a set of around twenty subtypes. Together with clinical markers such as hormone receptor status, this
classification has considerable prognostic value but there is a large variation in patient response to therapy. Gene
expression profiling has provided molecular profiles characteristic of distinct subtypes of breast cancer that reflect
the divergent cellular origins and degree of progression.

Methods: Here we present a large-scale proteomic and transcriptomic profiling study of 477 sporadic and
hereditary breast cancer tumors with matching mRNA expression analysis. Unsupervised hierarchal clustering was
performed and selected proteins from large-scale tandem mass spectrometry (MS/MS) analysis were transferred into
a highly multiplexed targeted selected reaction monitoring assay to classify tumors using a hierarchal cluster and
support vector machine with leave one out cross-validation.

Results: The subgroups formed upon unsupervised clustering agree very well with groups found at transcriptional
level; however, the classifiers (genes or their respective protein products) differ almost entirely between the two
datasets. In-depth analysis shows clear differences in pathways unique to each type, which may lie behind their
different clinical outcomes. Targeted mass spectrometry analysis and supervised clustering correlate very well with
subgroups determined by RNA classification and show convincing agreement with clinical parameters.

Conclusions: This work demonstrates the merits of protein expression profiling for breast cancer stratification.
These findings have important implications for the use of genomics and expression analysis for the prediction of
protein expression, such as receptor status and drug target expression. The highly multiplexed MS assay is easily
implemented in standard clinical chemistry practice, allowing rapid and cheap characterization of tumor tissue
suitable for directing the choice of treatment.
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Background
Breast cancer is a heterogeneous disease as seen both at
the molecular level and in its clinical presentation and
outcome. There is a great need to find parameters to de-
fine clinically relevant subgroups. Estrogen receptor (ER)
and progesterone (PgR) receptor status divide breast
cancer into positive and negative groups, allowing tar-
geted hormone therapies [1, 2]. However, only 60–70 %
of ER-positive patients respond to such treatment [3].
This demonstrates the diversity of breast cancer and the
need to define the molecular subtypes of the disease.
Comprehensive gene expression profiling has repeat-

edly confirmed distinct molecular subtypes of breast
cancer [4–8]. The five “intrinsic” subtypes luminal A and
B, human epidermal growth factor receptor 2 (HER2)-
enriched, basal-like and normal-like breast cancer have
been shown to be associated with different histological
features and clinical outcomes. These have been some-
what controversial but we show here that unsupervised
protein analysis supports these broad groupings. Specific
genomic alterations have also been associated with some
subtypes, further indicating these five subtypes as dis-
tinct disease entities [9, 10]. Specific gene expression
changes in response to chemotherapy are known to be
associated with these subtypes and hence have important
prognostic value, such as p21waf, which is strongly asso-
ciated with the luminal subtypes [11].
The luminal subtypes are generally positive for the ER

and/or PgR receptors and can further be subdivided
based on the HER2 status and/or proliferation status.
The remaining three subgroups are all usually ER-
negative. The HER2-enriched tumors are characterized
by their expression of ErbB2 (HER2). The basal-like sub-
group demonstrates greater genomic instability than
other molecular subtypes of breast cancer and has a par-
ticularly poor prognosis. Around 80 % of tumors classi-
fied as basal-like are also triple-negative (ER/PgR/HER2),
which demonstrates an incomplete overlap between mo-
lecular subtypes defined by gene expression profiling
and the classification through current clinical bio-
markers [12]. Many additional markers, especially basal
cytokeratins (CK 5/6, CK 17, 18) have been suggested
for improved classification of basal-like tumors but there
is currently no international consensus. In addition,
emerging technologies, such as, for example, somatic
copy number alterations on the transcriptome, opens up
the possibility of future integration of genomic, epige-
nomic, and proteomic data to provide additional mo-
lecular stratification value [13].
Genetic predisposition can be the cause of breast cancer

and germline mutations in the two major breast cancer
susceptibility genes BRCA1 and BRCA2 confer highly ele-
vated risk of the disease [14]. However, these account for
only a fraction of the hereditary cases and furthermore,

low-penetrance hereditary genes are being investigated
[15, 16]. BRCA1-mutated breast tumors typically ex-
hibit features of the basal-like molecular subtype
while BRCA2-mutated tumors usually are of the lu-
minal subtype [10, 17, 18]. The correlation between
DNA copy numbers, gene expression levels, and pro-
tein expression levels has been widely studied and
discussed, concluding that in most cases DNA copy
number, Mrna, and protein levels are not directly cor-
related [19–21].
Proteome-wide analysis is technically much more chal-

lenging than genome-wide measurements because of the
dynamic range of protein expression and the plethora of
isoforms and post-translational modifications, which
leads to the expression of approximately 500,000 protein
types from 20,000 genes [22]. The established method
for separating proteins is two-dimensional gel electro-
phoresis (2DE) [23]. This technology coupled with fluor-
escent labeling (DIGE) allows for large-scale parallel
analysis of samples and also resolves protein isoforms
and post-translational modified proteins [23]. Over the
last decade, a peptide-orientated shotgun mass spec-
trometry (MS) approach has been developed allowing
the identification of tens of thousands of peptides in a
sample [24] and the quantification of subsets of proteins
of clinical relevance [25]. Cell lines together with isotope
labeling provide a powerful model to accurately quantify
proteins in depth [26]. Recently, targeted MS has been
developed based on selected reaction monitoring (SRM)
[27, 28]. This technology targets specific proteins of
interest in an assay format avoiding the stochastic sam-
pling problems in shotgun proteomics that complicates
the parallel analysis of large sample sets. SRM technol-
ogy has proven to be robust enough to be suitable for
measuring clinical assays [29]. With the addition of
isotope-labeled internal standards, good assay accuracy
can be achieved and makes assays transferable between
different laboratories [30]. However, as for any clinical
assays, the SRM assay has to be carefully validated to es-
tablish its accuracy and sensitivity (limit of detection,
limit of quantification) and a coefficient of variation
(CV) of <15 % is a general requirement for clinical appli-
cation [31]. Such assays also have to be assessed in terms
of inter-laboratory transferability [29]. The selection of
correct peptides representing each target protein in a
specific sample type is critical [32].
In this work we present a large-scale study of breast

tumors performed in three parts. Initially 477 sporadic,
familial, and hereditary tumors were analyzed at the in-
tact protein level using 2D-DIGE. The mRNA expression
profiles of the majority of the tumors were analyzed and
the tumors were assigned to molecular subtypes using
the classifiers according to Sørlie [6], Hu [7], and the
prediction analysis of microarray (PAM50) assay [8].
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Unsupervised analysis of these protein data revealed that
the most predominant molecular subtypes defined at the
gene expression level are also resolved at the protein
level. We then carried out an in-depth analysis of sets of
pooled tumor material at the peptide level, using a
breast cell line as an internal standard and identified
4,255 protein families. Of these, 256 proteins were se-
lected for targeted proteomic profiling using SRM as-
says: 41 breast cancer tumors, including 17 from an
independent dataset, were analyzed and hierarchal clus-
tering of the data revealed a molecular portrait of breast
cancer subtypes highly similar to gene expression profil-
ing results. This study demonstrates that abundant pro-
teins that are readily measured with MS in a rapid assay
format can define molecular subtypes of value for clin-
ical diagnostics.

Methods
Materials
Cy2, Cy3, Cy5 dyes, immobilized pH gradient strips and
Pharmalytes were purchased from Serva (Heidelberg,
Germany). Acrylamide, urea, Tris, magnesium acetate,
DTT, iodoacetamide and the Protein assay kit (Micro
Lowry, Peterson’s modification) were bought from Sigma
Aldrich (Buchs, Switzerland). Trypsin (sequencing grade
modified) was from Promega Corp, Madison, WI, USA).

Patient and tumor material
Tissue samples (n = 477) were collected at Lund Univer-
sity Hospital and anonymized after obtaining informed
consent and approval by the Ethics committee (registra-
tion numbers LU240-01 and 2009/658). The dataset
comprised primary tumors of different histological grade
(435), recurrence or second primary tumors [19], lymph
nodes [9] and non-malignant tissue [14] from patients
predisposed to breast cancer. Out of the lymph node
samples, six had a matching primary tumor sample. Out
of the recurrences, four tumors had a matching primary
tumor sample. There were 215 hereditary samples with
40 samples from patients carrying a BRCA1 mutation,
15 samples from patients with a BRCA2 mutation and
the rest from patients with a clear hereditary family pat-
tern but unknown mutations (BRCAx). The clinical data
are presented in Additional file 1: Table S1. The resected
samples were snap frozen and stored at –80 °C. A path-
ologist first examined all samples to obtain representative,
viable, and non-necrotic tumor tissue. An appropriate
piece of the tumor was excised while keeping the tumor
cold. ER and PgR status was determined according to clin-
ical practice and retrieved from medical records. HER2
status was determined using array comparative genomic
hybridization (aCGH) as described previously [10, 17].
The tumor was powdered in a Teflon bomb cooled in li-
quid nitrogen. The sample was divided into two different

tubes, one for RNA extraction and the other for protein
extraction. RNA extraction was performed as described
previously [17].

Sample Preparation and 2D-DIGE analysis
Lysis buffer (30 μl) containing 8 M urea, 30 mM Tris,
5 mM magnesium acetate and 4 % 3-[(3-Cholamidopro-
pyl)dimethylammonio]-1-propanesulfonate (CHAPS), and
with pH 8.5, was added to the homogenized tumor mater-
ial. The samples were vortexed and cooled on ice for
20 minutes and then centrifuged at 4 °C for 15 minutes
and the supernatant was collected. The protein concentra-
tion was determined using the Protein Assay Kit (Sigma).
The samples were stored at –80 °C. Samples were labeled
with Cy3 or Cy5 dyes, respectively, and run on 2D-DIGE
and analyzed as described [23].

Merging of datasets and dye correction
Samples were run in two different batches with different
pools in the reference Cy2 channel. Seven gels were run
to normalize between the two pools. All samples in the
first batch were run with dye swap, i.e., each sample was
run once with Cy3 and once with Cy5 on different gels.
The duplicates were used to find the systematic dye bias
between Cy3 and Cy5 for each spot. As the biological
variance was vastly greater than the experimental vari-
ance, the rest of the samples were run once. All dupli-
cates were merged and all samples were assembled in a
data matrix comprising 473 samples measured in 1750
spots each.

Data analysis 2D-DIGE
Log2 standardized abundances were used. Spots were fil-
tered, for the Sammon map and the hierarchical cluster-
ing, by requiring spots to have at most 50 missing values
across all 473 samples, and a standard deviation above 0.7.
Euclidean distance was used for the Sammon map. For
the hierarchical clustering, Pearson-correlation-based dis-
tance was used as the similarity measure and average link-
age was employed to define cluster-to-cluster distances.
The Wilcoxon rank sum test was used for pairwise com-
parisons between groups. All statistical analysis was per-
formed in R, version 3.1.2 (www.r-project.org). Underlying
mRNA data defining the intrinsic subtype have been de-
posited as part of a larger dataset at the Gene Expression
Omnibus at NCBI [GEO:25307].

Liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis of breast tumor pools
A subset of female primary tumors with clear classifica-
tions that were the same using the Sørlie [6], Hu [7], or
the PAM50 [8] gene sets were used for pooling into a
normal-like (4 tumors), a luminal A (14 tumors), a lu-
minal B (4 tumors), an HER2 (5 tumors) and a basal
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group (15 tumors), as detailed in Additional file 2: Table
S2. The protein concentration was determined in each
pool and 50 μg protein from each tumor pool was fur-
ther pooled with 50 μg of a stable isotope labeling with
amino acids in cell culture (SILAC)-labeled breast can-
cer cell line (MDA-MB-231) [33].
The proteins were separated by SDS-PAGE as de-

scribed [34]; each lane was cut into 10 slices and
digested with trypsin [30]. Each sample was analyzed on
a Thermo LTQ Orbitrap mass spectrometer (Thermo-
Fisher, Bremen, Germany) coupled to an Eksigent 2D
NanoLC system (Eksigent technologies, Dublin, CA,
USA) as in [25]. Peptides were eluted with a gradient of
5–60 % solvent B over 120 minutes (Buffer A 0.1 % tri-
fluoroascetic acid (TFA)) in water; Buffer B 0.1 % formic
acid (FA) in acetonitrile (ACN)). Full-scan MS spectra
(m/z 300–2000) were acquired in the LTQ Orbitrap in
profile mode, with a resolution of 60,000 at m/z 400.
Lock mass was applied. The instrument was operated in
data-dependent acquisition mode. The spray voltage was
set to 2 kV and the temperature of the heated capillary
was 180 °C. The seven most intense ions from the sur-
vey scan performed by the Orbitrap were fragmented by
collision-induced dissociation in the LTQ (normalized
collision energy 35, parent mass selection window
0.7 Da, 30 ms activation time, and minimum signal
threshold for MS/MS scans set to 500 counts). All un-
assigned charge states and singly charged ions were
rejected for fragmentation. The dynamic exclusion list
was limited to a maximum of 500 masses with a max-
imum retention time window of 2 minutes and a relative
mass window of 10 ppm.
The data were analyzed in the MaxQuant (version 1.2)

software suite [35] using the Andromeda search engine
with the Swiss-Prot/UniProt release September 2011
[36]. Cysteine carbamidomethylation was set as the fixed
modification, while methionine oxidation and protein N-
terminus acetylation were added as variable variations.
Identifications were filtered with a false discovery rate
(FDR) of 0.05 at the peptide and protein levels. Over 4000
protein families and 14,000 proteins were identified when
combining the tumor and cell line data (Additional file 3:
Table S3). Data from the ten gel slices were merged to cre-
ate five tumor groups for comparison. The SILAC-labeled
cell line pool was used to normalize the data. Proteins of
interest were selected for further SRM analysis based on
intensity and fold change, and the top 20 % intensity data
from each of the five pools were selected. From this sub-
set, proteins with a fold change > ±10 for any pairwise
group comparison were selected to give a final list of
256 proteins for further SRM analysis in individual
tumor samples (Additional file 4: Table S4). The func-
tional enrichment analysis was carried out with Meta-
Core™ (Thomson Reuters, version 6.14) and Database

for Annotation, Visualization and Integrated Discovery
(DAVID) (National Institute of Allergy and Infectious
Diseases NIH, version 6.7) [37].

Targeted SRM analysis
Samples for SRM analysis were prepared by dissolving
the protein extracts in Laemmli buffer and then running
on a 12 % gel until the sample band was concentrated at
the junction of the stacking and running gel. The gel
was stained and the band cut out and digested as above.
The data identified from the orbitrap analysis described
previously was built into the SRM management software
Skyline version 1.3 [38] as a spectral library created
through the data management platform Proteios version
2.18 [39]. Peptide criteria were set to include peptides
8–25 amino acids long, with carbamidomethylated cyst-
eine residues and excluding ragged ends. One to two
proteotypic peptides per target protein that differenti-
ated most between the various groups were selected with
an average of four transitions per peptide. The peptides
were synthesized (JPT Peptides, Berlin) and SRM transi-
tion lists were generated using Skyline software. The
SRM measurements were performed on a TSQ Vantage
triple-stage quadrupole mass spectrometer (ThermoFisher,
San Jose, CA, USA) equipped with a nano-electrospray ion
source (ThermoFisher) as described previously [40] and
the peptides were eluted with a gradient of 97 % solv-
ent A at 0–5 minutes, 85 % A at 8 minutes, 65 % A
at 42 minutes, 10 % A at 45–50 minutes (the peptides and
the optimized transitions are given in Additional file 4:
Table S4. Forty-one tumor samples were analyzed, each in
duplicate (Additional file 5: Table S5). Each sample run was
manually inspected using Skyline software at both the sam-
ple level and at the peptide level. The dataset was integrated
using Anubis automated software version 1.1.6 [41]. All
mass spectrometry data, including MS/MS and SRM data
have been deposited in the ProteomeXchange Consor-
tium (http://proteomecentral.proteomexchange.org) via
the PRIDE partner repository with the dataset identi-
fier PXD000944 and DOI 10.6019/PXD000944.

Data analysis SRM
Log2 standardized abundances were used and duplicate
injections were merged. Hierarchical clustering analysis
was performed using Qlucore Omics Explorer 2.3 soft-
ware (Qlucore AB, Lund, Sweden). Multi-group com-
parison was done using analysis of variance (ANOVA)
and complete linkage was used for hierarchal clustering.
Supervised classification was performed with a support
vector machine. Leave one out cross-validation was
employed and only binary classifiers were used with no
seed. Every sample was left out once, and the remaining
samples were used as the training set. The sample left
out was tested on the resulting classifier and a decision
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value was obtained. Large positive and negative decision
values correspond to predictions in the two classes re-
spectively. Varying the threshold decision value between
the two classes produces a set of classifiers. Correspond-
ing values of sensitivity and selectivity are plotted as a
receiver operating characteristic (ROC) curve. The library
e1071 (http://cran.r-project.org/web/packages/e1071/index.
html) was used for the support vector machine. Default pa-
rameters and a linear kernel were used for the classifier.
Only peptides without missing values were used for the
classifier and values were logarithmically transformed and
normalized. All statistics was performed in R. ROC curves
are provided in Additional file 6: Figure S1.

Results
Clustering of intrinsic breast cancer subtypes according
to protein expression
In total 477 breast tissue samples were successfully ana-
lyzed (from a total of over 600 samples) in duplicate
using 2D-DIGE, allowing the profiling of several thou-
sand proteins and isoforms/PTMs (post-translational
modifications) per sample and the elimination of those
with protein degradation. The dataset is described in
“Methods” and Additional file 1: Table S1. In parallel,
370 of these tumors were analyzed for gene expression
using microarrays [17] and were assigned to the breast
cancer subgroups defined by Sørlie/PAM50 or the Hu
classifications [6]: the remainder had extensive mRNA
degradation and could not be analyzed. Unsupervised
analysis of the protein data revealed striking agreement
with the gene expression subtyping of the tumors. In
Fig. 1, all samples with known gene expression profiles
are displayed as a Sammon map (Fig. 1a) and as hierarchal
clustering (Fig. 1b). Luminal A and basal-like tumors were
most clearly defined by separate clusters. HER2-enriched
tumors and normal-like tumors had some degree of clus-
tering, whereas luminal B tumors were more evenly
spread across the clusters. Tumors carrying a BRCA1 mu-
tation (indicated by open rings) fell mostly within the
basal-like cluster, in agreement with gene expression re-
sults. Strikingly, the BRCA1-mutated tumors assigned to
other subtypes at a transcriptional level, all fell very close
to the basal-like cluster in the Sammon map.
Figure 2 shows hierarchical clustering of all tissue in-

cluded in the 2D-DIGE study including those without a
corresponding mRNA analysis. The associated clinical
parameters, including tissue type, hereditary mutation
status, ER and PgR status, tumor grade, and the histo-
logical type of cancer, are indicated below the clusters.
Three major branches emerged, one enriched with tu-
mors classified as luminal A and one enriched with
basal-like tumors. The normal-like tumors also tended
to form a cluster within the third branch and interest-
ingly, the non-malignant samples clustered close to the

normal-like tumors, an effect that has also been seen at
transcriptional level, which initially named the subgroup
[4]. Luminal B and HER2-enriched tumors were more
spread across the clusters. Out of the 39 tumors carrying
a BRCA1 mutation, 27 fell within the basal-like cluster,
which is a clear overrepresentation (Fig 1b). Out of the
27 BRCA1-mutated tumors falling within the basal-like
protein cluster, 7 had not been analyzed for gene expres-
sion and 3 of these tumors were assigned to other sub-
types in the gene expression analysis (HER2 or luminal
B). Also most non-primary tumors, i.e., secondary tu-
mors or metastases, were associated with the basal-like
cluster. Tumors carrying a BRCA2 or a BRCAx mutation
(familial but not BRCA1 or BRCA2) were more evenly
spread across the cluster as would be expected, as
BRCA2 tumors usually are associated with the luminal B
subtype, which we could not distinguish in this analysis.
The tumors that had not been analyzed for gene ex-

pression due to RNA degradation are labeled in gray and
are distributed over the entire cluster (Fig. 2). The 2D-
PAGE images allowed rapid identification of protein
degradation due to the appearance of characteristic low
molecular-weight spots corresponding to protein break-
down products. These samples were also eliminated
from the analysis (n = approximately 130). Sample col-
lection was well-controlled in this study and we there-
fore conclude that degradation of some samples is due
to long storage times in the freezer. The stratification of
these tumors could be indicated using the clinical infor-
mation available for the tumors. ER and PgR status was
strongly associated with the different clusters, with the
majority of the ER-positive and PgR-positive tumors fall-
ing within the cluster dominated by the luminal A tu-
mors and the ER-negative and PgR-negative tumors
falling within the basal-like cluster. Also, the majority of
the tumors in the basal-like cluster were of grade 3 and
all medullary tumors in the dataset were associated with
the basal-like cluster.

Separation of molecular subtypes
Pairwise Wilcoxon analysis of the subtypes defined at
the gene expression level was performed for the set of
tumors analyzed for protein expression. This further
confirmed the large differences in protein expression for
these tumors. Figure 3 shows the distribution of p values
for all protein spots for each pairwise group comparison.
There was a clear overrepresentation of proteins with
p values below 0.001, indicating that significant sub-
sets of proteins are differentially expressed between
the groups. The separation was strong for all pairwise
comparisons except for the comparison between the
HER2 and luminal B subtypes. The highest number of
spots with a p value below 0.001 was seen for com-
parison of the basal-like and luminal A subtypes, with
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almost 700 protein spots. In summary, unsupervised
analysis of the breast tumor proteome demonstrates
remarkable similarities with the molecular portraits of
breast cancer subtypes and thus, these molecular
changes are also reflected at the protein expression
level even at the level of abundant proteins repre-
sented on 2D gels.

In-depth protein characterization of molecular subtypes
of breast cancer
In order to characterize the tumor groups further and to
build a library of breast tumor proteins accessible to
mass spectrometric analysis for molecular subtype classi-
fication, we performed a comprehensive protein identifi-
cation analysis. A subset of tumors representing the five

Fig. 1 a Breast cancer tumors analyzed at protein expression level largely form the same type of clusters as seen at the gene expression level.
This is a Sammon map of the tumors using protein expression data from 2D-DIGE with matched mRNA data, color coded according to the Sørlie
gene expression classification of the same; luminal A (dark blue), luminal B (light blue), ERBB2 (purple), basal-like (red) and normal-like (green). Samples
from BRCA1-mutated patients are indicated as empty rings. b Corresponding hierarchal clustering of the same samples using the same data. The
basal-like and the luminal A clusters are strikingly homogenous
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molecular subtypes, luminal A, luminal B, HER2, basal-
like and normal-like, were selected (Additional file 2:
Table S2). The PAM50, Hu and Sørlie gene classifica-
tions of all tumors were in concordance. In total 4255
classes of protein representing over 14,000 proteins were
identified, which to our knowledge is the largest set
of proteins identified from breast cancer tumors
(Additional file 3: Table S3).

Gene expression enrichment and pathway analysis
differences in the protein subtypes
An initial overview of the in-depth dataset analyzed using
DAVID shows that of the 2734 identifications accepted as
Swiss-/UniProt accessions, 768 are epithelial, and 161 are
annotated as cancer-associated gene products. The latter
proteins are enzymes clustered around drug metabolism,
followed by immune system response, DNA repair, cell
signaling, and cytoskeletal remodeling. A more thorough
investigation using MetaCore™ to compare pathway

differences amongst the various intrinsic molecular types
showed clear differences.
Both luminal subtypes had strong upregulation of chro-

matin remodeling including increased expression of
BAF53 [SwissProt:O96019] and histone acetyl-transferases
indicating nucleosome disassembly. Several proteins in
the Toll signaling pathway are also upregulated, probably
in response to increased interleukin levels. Several DNA
repair proteins RAD50 [SwissProt:Q92878], UBE2V1
[SwissProt:Q13404], and UBE2N [SwissProt:P61088] are
increased, while C-Jun [SwissProt:P05412] and MTA1
(metastasis associated protein) [SwissProt:Q13330] are
downregulated, leading to a decrease in Bcl-XL-induced
apoptosis. The luminal B subtype differs strongly from the
luminal A subtype, in that many cytoskeletal remodeling
pathways and several clathrins involved with the HER2 re-
ceptor and vesicle transport are highly upregulated.
In the basal subtype alpha3, beta1 integrin [Swis-

sProt:P26006 and SwissProt:P05556] are downregulated,

Fig. 2 a Unsupervised hierarchal clustering of all samples analyzed on 2D-DIGE (fig 2a). Samples previously analyzed at gene expression level are
colored according to the Sørlie gene expression classification: luminal A (dark blue), luminal B (light blue), ERBB2 (purple), basal-like (red) and
normal-like (green). Samples with unknown gene expression are colored gray. Clinical parameters are indicated under the cluster where a black
bar indicates presence of the variable. b Distribution of BRCA1-mutated tumors in the basal-like cluster compared to the non-basal like cluster
Fishers exact test p value = 2*10-7
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which leads to lowering of the activity of focal adhesion
kinase (FAK) and hence, many mitogen-activated protein
(MAP) kinases (MAP2K4, MAPK14 and MAP2K3 [Swis-
sProt:P45985, SwissProt:Q16539 and SwissProt:P46734]).
This is reinforced by downregulation of c-JUN, which
lowers PKC, which normally activates FAK. This is
supported by downregulation of IKK-beta [Swis-
sProt:O14920], which stops activation of NCOA3,
which activates FAK. Poly (ADP-ribose) polymerase 1
(PARP1) [SwissProt:P09874], a protein that in recent
years has been extensively studied in breast and ovar-
ian cancer, is upregulated in the basal-like cluster.
PARP1 is involved in DNA repair, as is the BRCA1

protein. Targeted PARP1 inhibition has proven espe-
cially effective as a treatment for patients carrying a
BRCA1 mutation, and in triple-negative breast cancer
(because of the similarities with BRCA1-mutated tu-
mors) leading to an inhibition of dual DNA repair
pathways leading to cell death [42]. Gene expression
of S100-A11 has specifically been reported as upregu-
lated in basal-type breast cancers compared to non-
basal types [43], which agrees with our findings and
S100-A11 [SwissProt: P31949] has been proposed as a
diagnostic marker for breast cancer [44].
The HER2 subtype is defined by upregulation of the

Her2 receptor [SwissProt:P04626]. BAF53 [SwissProt:

Fig. 3 Wilcoxon pairwise comparison of 2D-DIGE data for all tumors grouped according to the Sørlie gene expression classification. The frequency
(y-axis) of p values (x-axis, 0–1) for the pairwise comparisons of all five subtypes. All pairwise comparisons demonstrate a clear overrepresentation
of p values <0.001 except for the human epidermal growth factor receptor 2 (Her2) versus luminal B (LumB) pairwise comparison
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O96019], and BAF60 [SwissProt:P51532] (both part of
the CREST-BRG1 complex) are upregulated and this
complex may be required for the activation of transcrip-
tional programs associated with oncogene and proto-
oncogene mediated growth induction. This is accompanied
by downregulation of E3 ubiquitin-protein ligase TRAF2
also known as tumor necrosis factor type 2 receptor-
associated protein (TRAF2) [Q12933], tumor necrosis
factor receptor type 1-associated DEATH domain protein
(TRADD), which usually acts as a tumor suppressor
[Q15628], and NF-kappa-B essential modulator (NEMO)
[SwissProt:Q9Y6K9], which usually form a complex acti-
vating receptor interacting protein (RIP1).
The normal-like subtype has clear upregulation of

metabolic pathways, with an increase in tricarboxylic
acid (TCA) cycle enzymes, glucose transport, oxida-
tive phosphorylation, and especially the associated
nicotinamide adenine dinucleotide (NADH) dehydro-
genase subunits. The normal-like subtype also has
blood coagulation proteins such as thrombin [Swis-
sProt:P00734], fibrinogen alpha [SwissProt:P02671],
Serpine 2 [SwissProt:P07093] and plasmin. Previous
studies using highly purified and washed ovarian epi-
thelial cells showed that these proteins were not just
due to contaminating blood but that these proteins
are either strongly bound to the plasma membrane or
have been internalized and can be found in both the
gel and shotgun experiments [22].

Targeted protein assay profiling for tumor classification
Out of the comprehensive set of proteins identified, 256
proteins were chosen for use in an SRM-based subtype
classification. The proteins were among the top 20 %
most intense in the MS analysis and had the greatest
discriminatory power in pairwise group comparisons. A
specific MS-based assay, SRM, was established for these
proteins, which after refinement, contained 190 proteins
represented by 253 peptides (Additional file 4: Table S4):
24 tumors from the original dataset were analyzed in
duplicate using the assay, together with 17 tumors from
an independent dataset, giving a total of 41 tumors
(Additional file 5: Table S5). Of the 41 tumors, 26 were
assigned to the same molecular subtype by all the three
RNA classifiers. We reasoned that this core set of tumors
is representative of the five intrinsic subtypes, as the clas-
sification of these was consensual and we used this set for
hierarchal clustering using multi-group ANOVA compari-
son with a p value cutoff of 0.01 (Fig. 4). The hierarchal
clustering demonstrates remarkably strong similarities to
the molecular classification of breast tumors at the gene
expression level using the intrinsic gene set [4]. Tumors of
luminal and basal origin separated in the first branching
followed by further sub branching of tumors assigned to
the basal-like, HER2 and normal-like subtypes. The

majority of tumors in this analysis clustered with tumors
of the same RNA subtype, although there was a slight
overlap between the HER2-enriched and normal-like clus-
ter. There were only two tumors classified as luminal B
available in this analysis and both clustered with the basal-
like tumor.

Discriminatory power of the SRM signature
Based on ANOVA, the best discriminators, twelve pro-
teins, were tested using hierarchal clustering of the en-
tire dataset of 41 tumors (Fig. 5). In this total dataset, in
addition to tumors with precise classification according
to the three gene expression signatures, there were tu-
mors not analyzed at all on gene expression (labeled in
gray for all three classifiers) and tumors where the three
different classifiers assigned tumors to different sub-
classes or in some cases, could not classify them at all
(labeled in gray for that specific classifier). This dataset
also displayed very high similarities to clusters at gene
expression level. Luminal A tumors were separated from
the remaining tumors of basal origin. Of these tumors,
the basal-like subtype formed a clear cluster and HER2
and normal-like tumors formed a separate branch with
relatively high separation between these two groups also.
Again, the few luminal B tumors were spread across the
cluster and it is clear that for proper analysis of this sub-
set more samples would have been needed. Information
on the status of BRCA1 methylation, BRCA, ER, and
PgR was available: five of the six tumors in this dataset
carrying either BRCA1 methylation (n = 3 tumors) or a
BRCA1 mutation (n = 3 tumors) fell within the basal-like
cluster. The rest of the familial (BRCAx) tumors were
spread across the cluster. Eight out of nine tumors in
the luminal A cluster were ER-positive (dark blue) and
seven out of nine were PgR-positive (dark purple). The
normal-like tumors seem to divide into two separate
clusters dominated by ER/PgR-positive or ER/PgR-nega-
tive tumors, respectively.
A support vector machine and a leave one out cross-

validation approach was used to create ROC curves for
all pairwise comparisons. All three different RNA classi-
fiers were tested. Eight out of the ten pairwise compari-
sons provided good ROC areas with p values below 0.05.
For four of the pairwise comparisons the PAM50 classi-
fication provided the best ROC areas with p values
below 0.02; ROC areas: basal versus luminal A = 0.95,
basal versus normal = 0.83 HER2 versus luminal A = 1,
and HER2 versus normal = 0.89. For basal versus luminal
B the ROC area was 0.86 and for luminal A versus nor-
mal the ROC area was 0.89, using the Hu classifier.
Using the Sörlie classifier the best ROC areas were for
the basal versus HER2 comparison with a ROC area of
0.75 and a ROC area of 0.84 for the luminal A versus
luminal B comparison providing. ROC areas for all
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classifiers and pairwise comparisons are provided in
Additional file 6: Figure S1.

Discussion
Gene expression profiling of breast cancer for classifica-
tion into clinically relevant subtypes has become very
well-established over the past decade and it is being dis-
cussed whether this should be incorporated into clinical
practice [12]. Translating these results to protein level
has proven difficult as gene expression and protein ex-
pression are not directly correlated [19, 21, 45]. We have
compared 477 tissue samples at the protein level and 370
at the mRNA level. We used the gene expression data to
classify the samples by three different methods, Sørlie [6],
Hu [7] and PAM50 [8].
The resultant clustering of protein expression data in

this study shows a striking resemblance to subtyping of
tumors using gene expression, both with 2D-DIGE tech-
nology and a large set of samples, and with the shotgun
LC-MS/MS of pooled samples and the targeted SRM
analysis with a smaller sample set. However, there is

little overlap between the classifiers found with the
2D-DIGE or the LC-MS/MS analysis and the mRNA
classifiers found in the three schemes used. This is
not surprising for the gel approach because the pro-
tein coverage is roughly ten times less than the
number of genes analyzed and does not include mem-
brane or membrane-associated proteins such as the
hormone receptors and members of the Claudin fam-
ily. The LC-MS/MS would have been thought to have
concordance due to the greater coverage, though this
was not the case.
The most clear-cut distinction was seen between the

basal-like and the luminal A tumors. The luminal and
basal subtypes have repeatedly been identified and vali-
dated as the two main classes of breast cancer originating
from either the basal or the luminal epithelial cells of the
mammary ducts. These two are associated with different
ER status, distinctly different gene expression patterns and
a significant difference in clinical outcome. Basal-like or
triple-negative breast cancer tumors with their particularly
poor prognosis would benefit immensely from better

Fig. 4 Cluster analysis of the “core set” of tumors using analysis of variance filtering (p value 0.01). The tumor classification according to three
gene expression profiling methods is indicated below the branching and colored accordingly: red basal-like, magenta HER2, green normal-like, blue
luminal A, turquoise luminal B. Proteins are indicated with the SwissProt ID and short name
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prognostic markers [46]. The overlap we see between the
HER2 and luminal B (Figs. 1 and 2) groups is also in
agreement with what is seen at transcriptional level where
these groups have similarities in expression of some of the
genes in the gene set defining luminal B tumors. Each of
the subtypes has differential enrichment of certain gene
sets confirming their definition as functionally different
molecular subtypes.
A significant percentage (45 %), of the tumors in-

cluded in this study was from patients with a family his-
tory of breast cancer (the Swedish average is 35 %) with
BRCA1 and BRCA12 accounting for 8 % and 3 %, re-
spectively [47]. The rest are considered to comprise a
very pathologically heterogeneous group, indicating that
these tumors arise from multiple genetic events [48].
Apart from the patients carrying a BRCA1 mutation, the

familial cases in this study were evenly spread across
the clusters derived from protein expression analysis
(Figs. 2 and 5). Patients carrying germline mutations
in BRCA1 most frequently develop basal-like tumors
giving a particularly poor prognosis for these patients
[10]. Protein expression analysis also associates the
BRCA1 tumors with the basal-like cluster (Figs. 1 and 5).
Notably, the BRCA1 tumors not classified as basal-
like according to gene expression all fall in or very
close to this cluster in the protein expression analysis
(Fig. 1). The targeted SRM analysis included only
BRCA1-mutated tumors classified as basal-like from
gene expression. In addition a number of tumors test-
ing positive for methylation of the BRCA1 gene were
included. All of these tumors but one fell within the
basal-like cluster (Fig. 5).

Fig. 5 Cluster analysis of all tumors analyzed with the selected reaction monitoring protein assay. The tumor classification according to three
gene expression profiling methods is indicated below the branching and colored accordingly: the tumor classification according to three gene
expression profiling methods is indicated below the branching and colored accordingly: red basal-like, magenta human epidermal growth factor
receptor 2, green normal-like, blue luminal A, turquoise luminal B, gray unknown classification. Clinical parameters including BRCA1 methylation status
(pink positive), BRCA mutational status (pink BRCA1-positive, yellow BRCAx-positive), estrogen receptor (ER) (dark blue positive), and progesterone
receptor (PgR) (darker purple positive) status and overall survival (green alive) are indicated below the samples. Proteins are indicated with the SwissProt
ID and short name. PAM50 prediction analysis of microarray
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In addition to the five intrinsic molecular subtypes de-
scribed from gene expression analysis, additional sub-
types have been reported including a luminal C subtype
[49], the molecular apocrine type [50], and a Claudin-
low subtype [51]. The protein expression profiling of
breast cancer tumors in this study demonstrates a re-
markable but not complete overlap with the intrinsic
subtypes, but does not demonstrate these other group-
ings. In the case of the Claudin-low subtype it is prob-
ably due to difficulty demonstrating that the expression
is low in a shotgun experiment, rather than just absent
due to under sampling. In-depth profiling of tumors at
the protein expression and post-translational level (espe-
cially phosphorylation profiles) will probably allow the
definition of further (sub) groups that can be translated
into mass spectrometric SRM assays. Such SRM assays
allow for rapid large-scale parallel analysis (300 proteins
per tissue sample per hour) in a format that is already
used clinically for small molecule analysis. Recent stud-
ies have demonstrated that this technology can also
readily be applied to protein analysis with the required
precision and inter-laboratory transferability required
[29]. In this work, the peptides were carefully selected
and in accordance with established general recommen-
dations [32]. To validate the clinical value and applic-
ability of the assay, parameters such as assay accuracy,
reproducibility and laboratory transferability has to be
assessed and controlled for. The use of isotopically la-
beled internal standards in form of proteins or peptides
are instrumental in this process, providing detection
confidence and means of assessing the previously men-
tioned parameters [30].
The assay established in this study purposely did not

include proteins that are clinically established or pro-
posed markers, though many are breast cancer related
proteins, such as the cytokeratin family. Luminal A and
B subtypes both express markers of the luminal epithe-
lial layer of normal breast ducts such as keratin 8 and 18
while the basal-like group expresses markers of the basal
layer of the normal breast duct such as keratin 5/6.
Moreover, ER, PgR, and HER2 could be included to pro-
vide more clinical data for the analysis and we have con-
firmed that we can confidently measure these proteins
with targeted MS (unpublished data). In addition, we
have recently developed SRM assays that cover all six
major DNA repair pathways allowing the response to
chemotherapeutic agents to be monitored quantitatively
[43]. This would mean a single assay analysis for breast
cancer diagnosis and prognosis.

Conclusions
Disease stratification for improved cancer care and treat-
ment is vital to realize the promise of personalized medi-
cine. The findings in this work are important in that they

support and expand the molecular classification markers
for breast cancer tumors into major intrinsic subtypes,
demonstrating the great overlap of subtypes formed using
gene expression and protein expression profiling, though
showing the lack of correspondence between the discrimi-
nators found by each method. These findings have import-
ant implications for the use of genomics and expression
analysis for prediction of protein expression, such as re-
ceptor status and drug target expression and thus, the util-
ity of protein expression profiling for identifying novel
molecular markers. The highly multiplexed assay is easily
implemented in standard clinical chemistry practice,
allowing rapid and cheap characterization of tumor tissue
suitable for directing the choice of treatment.
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