8 research outputs found

    A desymmetrization route to fused Troger's base analogues: Synthesis, isolation, and characterization of the first anti-anti diastereomer of a fused tris-Troger's base analogue

    No full text
    A desymmetrization route to fused Troger's base analogues was developed. In this way, the synthesis of the first example of an anti-anti diastereomer of a fused tris-Troger's base analogue was accomplished. The resulting compound 5b is a nonlinear symmetric regioisomer obtained from p-bromoaniline in 7% yield. The corresponding syn-anti diastereomer 5a was obtained in 4% yield

    A short designed semi-aromatic organic nanotube - synthesis, chiroptical characterization, and host properties.

    No full text
    The first generation of an organic nanotube based on the enantiomerically pure bicyclo[3.3.1]nonane framework is presented. The helical tube synthesised is the longest to date having its aromatic systems oriented parallel to the axis of propagation (length ∼26 Å and inner diameter ∼11 Å according to molecular dynamics simulations in chloroform). The synthesis of the tube, a heptamer, is based on a series of Friedländer condensations and the use of pyrido[3,2-d]pyrimidine units as masked 2-amino aldehydes, as a general means to propagate organic tubular structures and the introduction of a methoxy group for modification toward solubility and functionalization are described. The electronic CD spectra of the tube and molecular intermediates are correlated with theoretical spectra calculated with time-dependent density functional theory to characterize the chirality of the tube. Both experimental (NMR-titrations) and theoretical (molecular dynamics simulations) techniques are used to investigate the use of the tube as a receptor for the acetylcholine and guanidinium cations, respectively

    Synthesis and self-aggregation of enantiopure and racemic molecular tweezers based on the bicyclo[3.3.1]nonane framework.

    No full text
    A pair of molecular tweezers (syn-4) that consists of quinoline and pyrazine units fused to a bicyclic framework is presented. The tweezers were synthesised both as a racemic mixture (rac-4) and an enantiomerically pure form ((R,R,R,R)-4) starting from either racemic or enantiomerically pure bicyclo[3.3.1]nonane-2,6-dione (3). Homochiral dimers were observed in the solid state for rac-4. The self-association of both rac-4 and (R,R,R,R)-4 was studied in solution. A weak self-association constant in CDCl(3) was estimated by (1)H NMR spectroscopic dilution titration experiments in both cases, following several proton resonances. For this purpose, a general normalisation model for the accurate determination of association constants from multiple datasets was developed. In contrast to the solid state, no diastereomeric discrimination was observed for rac-4 in solution

    A Double Conformationally Restricted Dynamic Supramolecular System for the Substrate-Selective Epoxidation of Olefins-A Comparative Study on the Influence of Preorganization

    No full text
    A double conformationally restricted kinetically labile supramolecular catalytic system, the third generation, was designed and synthesized. We investigated the substrate selectivity of this system by performing competitive pairwise epoxidations of pyridyl-and phenyl-appended olefins. We compared the obtained substrate selectivities to previous less preorganized generations of this system. Five different substrate pairs were investigated, and the present double conformationally restricted system showed higher normalized substrate selectivities ( pyridyl versus phenyl) for two of the substrate pairs than the previous less conformationally restricted generations. As for the preorganization of the components of the system, the catalyst, and the receptor part, it was shown that for each substrate pair there was one generation that was better than the other to generate substrate-selective catalysis

    THCz : Small molecules with antimicrobial activity that block cell wall lipid intermediates

    No full text
    Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials

    Design, synthesis, and evaluation of novel Δ2-thiazolino 2-pyridone derivatives that potentiate isoniazid activity in an isoniazid-resistant mycobacterium tuberculosis mutant

    No full text
    Mycobacterium tuberculosis (Mtb) drug resistance poses an alarming threat to global tuberculosis control. We previously reported that C10, a ring-fused thiazolo-2-pyridone, inhibits Mtb respiration, blocks biofilm formation, and restores the activity of the antibiotic isoniazid (INH) in INH-resistant Mtb isolates. This discovery revealed a new strategy to address INH resistance. Expanding upon this strategy, we identified C10 analogues with improved potency and drug-like properties. By exploring three heterocycle spacers (oxadiazole, 1,2,3-triazole, and isoxazole) on the ring-fused thiazolo-2-pyridone scaffold, we identified two novel isoxazoles, 17h and 17j. 17h and 17j inhibited Mtb respiration and biofilm formation more potently with a broader therapeutic window, were better potentiators of INH-mediated inhibition of an INH-resistant Mtb mutant, and more effectively inhibited intracellular Mtb replication than C10. The (−)17j enantiomer showed further enhanced activity compared to its enantiomer and the 17j racemic mixture. Our potent second-generation C10 analogues offer promise for therapeutic development against drug-resistant Mtb
    corecore