204 research outputs found
The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation
Observations of cosmic-ray electrons and positrons have been made with a new
balloon-borne detector, HEAT (the "High-Energy Antimatter Telescope"), first
flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach
and the data analysis procedures, and we present results from this flight. The
measurement has provided a new determination of the individual energy spectra
of electrons and positrons from 5 GeV to about 50 GeV, and of the combined
"all-electron" intensity (e+ + e-) up to about 100 GeV. The single power-law
spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3
+/- 0.2, respectively. We find that a contribution from primary sources to the
positron intensity in this energy region, if it exists, must be quite small.Comment: latex2e file, 30 pages, 15 figures, aas2pp4.sty and epsf.tex needed.
To appear in May 10, 1998 issue of Ap.
The Robustness of Quintessence
Recent observations seem to suggest that our Universe is accelerating
implying that it is dominated by a fluid whose equation of state is negative.
Quintessence is a possible explanation. In particular, the concept of tracking
solutions permits to adress the fine-tuning and coincidence problems. We study
this proposal in the simplest case of an inverse power potential and
investigate its robustness to corrections. We show that quintessence is not
affected by the one-loop quantum corrections. In the supersymmetric case where
the quintessential potential is motivated by non-perturbative effects in gauge
theories, we consider the curvature effects and the K\"ahler corrections. We
find that the curvature effects are negligible while the K\"ahler corrections
modify the early evolution of the quintessence field. Finally we study the
supergravity corrections and show that they must be taken into account as
at small red-shifts. We discuss simple supergravity
models exhibiting the quintessential behaviour. In particular, we propose a
model where the scalar potential is given by . We argue that the fine-tuning problem
can be overcome if . This model leads to
for which is in good agreement with the presently
available data.Comment: 16 pages, 7 figure
WMAP constraint on the P-term inflationary model
In light of WMAP results, we examine the observational constraint on the
P-term inflation. With the tunable parameter , P-term inflation contains
richer physics than D-term and F-term inflationary models. We find the
logarithmic derivative spectral index with on large scales and on
small scales in agreement to observation. We obtained a reasonable range for
the choice of the gauge coupling constant in order to meet the requirements
of WMAP observation and the expected number of the e-foldings. Although tuning
and we can have larger values for the logarithmic derivative of the
spectral index, it is not possible to satisfy all observational requirements
for both, the spectral index and its logarithmic derivative at the same time.Comment: 6 pages, double column, 13 figures included. Version appearing in the
Physical Review
Cosmic-Ray Positrons: Are There Primary Sources?
Cosmic rays at the Earth include a secondary component originating in
collisions of primary particles with the diffuse interstellar gas. The
secondary cosmic rays are relatively rare but carry important information on
the Galactic propagation of the primary particles. The secondary component
includes a small fraction of antimatter particles, positrons and antiprotons.
In addition, positrons and antiprotons may also come from unusual sources and
possibly provide insight into new physics. For instance, the annihilation of
heavy supersymmetric dark matter particles within the Galactic halo could lead
to positrons or antiprotons with distinctive energy signatures. With the
High-Energy Antimatter Telescope (HEAT) balloon-borne instrument, we have
measured the abundances of positrons and electrons at energies between 1 and 50
GeV. The data suggest that indeed a small additional antimatter component may
be present that cannot be explained by a purely secondary production mechanism.
Here we describe the signature of the effect and discuss its possible origin.Comment: 15 pages, Latex, epsfig and aasms4 macros required, to appear in
Astroparticle Physics (1999
Multiple Methods for Estimating the Bispectrum of the Cosmic Microwave Background with Application to the MAXIMA Data
We describe different methods for estimating the bispectrum of Cosmic
Microwave Background data. In particular we construct a minimum variance
estimator for the flat-sky limit and compare results with previously-studied
frequentist methods. Application to the MAXIMA dataset shows consistency with
primordial Gaussianity. Weak quadratic non-Gaussianity is characterised by a
tunable parameter , corresponding to non-Gaussianity at a level (ratio of non-Gaussian to Gaussian terms), and we find limits of
for the minimum-variance estimator and for the
usual frequentist estimator. These are the tightest limits on primordial
non-Gaussianity which include the full effects of the radiation transfer
function.Comment: 24 pages, 13 figure
Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology
As the era of high precision cosmology approaches, the empirically determined
power spectrum of the microwave background anisotropy, , will provide a
crucial test for cosmological theories. We present a unified semi-analytic
framework for the study of the statistical properties of the coefficients
computed from the results of balloon, ground based, and satellite experiments.
An illustrative application shows that commonly used approximations {\it bias}
the estimation of the baryon parameter at the 1% level even for a
satellite capturing as much as % of the sky.Comment: 4 pages, 3 figures. Also available at
http://www.tac.dk/~wandelt/downloads.htm
ACBAR: The Arcminute Cosmology Bolometer Array Receiver
We describe the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a
multifrequency millimeter-wave receiver designed for observations of the Cosmic
Microwave Background (CMB) and the Sunyaev-Zel'dovich effect in clusters of
galaxies. The ACBAR focal plane consists of a 16-pixel, background-limited, 240
mK bolometer array that can be configured to observe simultaneously at 150,
220, 280, and 350 GHz. With 4-5' FWHM Gaussian beam sizes and a 3 degree
azimuth chop, ACBAR is sensitive to a wide range of angular scales. ACBAR was
installed on the 2 m Viper telescope at the South Pole in January 2001. We
describe the design of the instrument and its performance during the 2001 and
2002 observing seasons.Comment: 59 pages, 16 figures -- updated to reflect version published in ApJ
Measuring CMB Polarization with BOOMERANG
BOOMERANG is a balloon-borne telescope designed for long duration (LDB)
flights around Antarctica. The second LDB Flight of BOOMERANG took place in
January 2003. The primary goal of this flight was to measure the polarization
of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz.
Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We
describe the BOOMERANG telescope noting changes made for 2003 LDB flight, and
discuss some of the issues involved in the measurement of polarization with
bolometers. Lastly, we report on the 2003 flight and provide an estimate of the
expected results.Comment: 12 pages, 8 figures, To be published in the proceedings of "The
Cosmic Microwave Background and its Polarization", New Astronomy Reviews,
(eds. S. Hanany and K.A. Olive). Fixed typos, and reformatted citation
Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons
We present a new measurement of air shower muons made during atmospheric
ascent of the High Energy Antimatter Telescope balloon experiment. The muon
charge ratio mu+ / mu- is presented as a function of atmospheric depth in the
momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are
presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and
960 g/cm^2. We compare our measurements with other recent data and with Monte
Carlo calculations of the same type as those used in predicting atmospheric
neutrino fluxes. We find that our measured mu- fluxes are smaller than the
predictions by as much as 70% at shallow atmospheric depths, by about 20% at
the depth of shower maximum, and are in good agreement with the predictions at
greater depths. We explore the consequences of this on the question of
atmospheric neutrino production.Comment: 11 pages, 8 figures, to appear in Phys. Rev. D (2000
- …