226 research outputs found

    A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    Get PDF
    We report on a measurement of the angular spectrum of the CMB between l≈100l\approx 100 and l≈400l\approx 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δTl≈85 μ\delta T_l \approx 85~\muK at l≈200l\approx 200 and a fall at l>300l>300, thereby localizing the peak near l≈200l\approx 200; and 2) that the anisotropy at l≈200l\approx 200 has the spectrum of the CMB.Comment: 4 pages, 2 figures. Revised version; includes Ned Wright's postscript fix. Accepted by ApJL. Website at http://physics.princeton.edu/~cmb

    The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation

    Get PDF
    Observations of cosmic-ray electrons and positrons have been made with a new balloon-borne detector, HEAT (the "High-Energy Antimatter Telescope"), first flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach and the data analysis procedures, and we present results from this flight. The measurement has provided a new determination of the individual energy spectra of electrons and positrons from 5 GeV to about 50 GeV, and of the combined "all-electron" intensity (e+ + e-) up to about 100 GeV. The single power-law spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3 +/- 0.2, respectively. We find that a contribution from primary sources to the positron intensity in this energy region, if it exists, must be quite small.Comment: latex2e file, 30 pages, 15 figures, aas2pp4.sty and epsf.tex needed. To appear in May 10, 1998 issue of Ap.

    Fast Pixel Space Convolution for CMB Surveys with Asymmetric Beams and Complex Scan Strategies: FEBeCoP

    Full text link
    Precise measurement of the angular power spectrum of the Cosmic Microwave Background (CMB) temperature and polarization anisotropy can tightly constrain many cosmological models and parameters. However, accurate measurements can only be realized in practice provided all major systematic effects have been taken into account. Beam asymmetry, coupled with the scan strategy, is a major source of systematic error in scanning CMB experiments such as Planck, the focus of our current interest. We envision Monte Carlo methods to rigorously study and account for the systematic effect of beams in CMB analysis. Toward that goal, we have developed a fast pixel space convolution method that can simulate sky maps observed by a scanning instrument, taking into account real beam shapes and scan strategy. The essence is to pre-compute the "effective beams" using a computer code, "Fast Effective Beam Convolution in Pixel space" (FEBeCoP), that we have developed for the Planck mission. The code computes effective beams given the focal plane beam characteristics of the Planck instrument and the full history of actual satellite pointing, and performs very fast convolution of sky signals using the effective beams. In this paper, we describe the algorithm and the computational scheme that has been implemented. We also outline a few applications of the effective beams in the precision analysis of Planck data, for characterizing the CMB anisotropy and for detecting and measuring properties of point sources.Comment: 26 pages, 15 figures. New subsection on beam/PSF statistics, new and better figures, more explicit algebra for polarized beams, added explanatory text at many places following referees comments [Accepted for publication in ApJS

    ACBAR: The Arcminute Cosmology Bolometer Array Receiver

    Full text link
    We describe the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a multifrequency millimeter-wave receiver designed for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich effect in clusters of galaxies. The ACBAR focal plane consists of a 16-pixel, background-limited, 240 mK bolometer array that can be configured to observe simultaneously at 150, 220, 280, and 350 GHz. With 4-5' FWHM Gaussian beam sizes and a 3 degree azimuth chop, ACBAR is sensitive to a wide range of angular scales. ACBAR was installed on the 2 m Viper telescope at the South Pole in January 2001. We describe the design of the instrument and its performance during the 2001 and 2002 observing seasons.Comment: 59 pages, 16 figures -- updated to reflect version published in ApJ

    Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons

    Full text link
    We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.Comment: 11 pages, 8 figures, to appear in Phys. Rev. D (2000

    The Robustness of Quintessence

    Full text link
    Recent observations seem to suggest that our Universe is accelerating implying that it is dominated by a fluid whose equation of state is negative. Quintessence is a possible explanation. In particular, the concept of tracking solutions permits to adress the fine-tuning and coincidence problems. We study this proposal in the simplest case of an inverse power potential and investigate its robustness to corrections. We show that quintessence is not affected by the one-loop quantum corrections. In the supersymmetric case where the quintessential potential is motivated by non-perturbative effects in gauge theories, we consider the curvature effects and the K\"ahler corrections. We find that the curvature effects are negligible while the K\"ahler corrections modify the early evolution of the quintessence field. Finally we study the supergravity corrections and show that they must be taken into account as Q≈mPlQ\approx m_{\rm Pl} at small red-shifts. We discuss simple supergravity models exhibiting the quintessential behaviour. In particular, we propose a model where the scalar potential is given by V(Q)=Λ4+αQαeκ2Q2V(Q)=\frac{\Lambda^{4+\alpha }}{Q^{\alpha}}e^{\frac{\kappa}{2}Q^2}. We argue that the fine-tuning problem can be overcome if α≥11\alpha \ge 11. This model leads to ωQ≈−0.82\omega_Q\approx -0.82 for Ωm≈0.3\Omega_{\rm m}\approx 0.3 which is in good agreement with the presently available data.Comment: 16 pages, 7 figure

    Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology

    Get PDF
    As the era of high precision cosmology approaches, the empirically determined power spectrum of the microwave background anisotropy, ClC_l, will provide a crucial test for cosmological theories. We present a unified semi-analytic framework for the study of the statistical properties of the ClC_l coefficients computed from the results of balloon, ground based, and satellite experiments. An illustrative application shows that commonly used approximations {\it bias} the estimation of the baryon parameter Ωb\Omega_b at the 1% level even for a satellite capturing as much as ∼70\sim 70% of the sky.Comment: 4 pages, 3 figures. Also available at http://www.tac.dk/~wandelt/downloads.htm
    • …
    corecore