4 research outputs found

    Mind the Gap—A Socio-Economic Analysis on Price Developments of Green Hydrogen, Synthetic Fuels, and Conventional Energy Carriers in Germany

    No full text
    In recent years, the development of energy prices in Germany has been frequently accompanied by criticism and warnings of socio-economic disruptions. Especially with respect to the electricity sector, the debate on increasing energy bills was strongly correlated with the energy system transition. However, whereas fossil fuels have rapidly increased in price recently, renewable substitutes such as green hydrogen and synthetic fuels also enter the markets at comparatively high prices. On the other hand, the present fossil fuel supply is still considered too low-priced by experts because societal greenhouse gas-induced environmental impact costs are not yet compensated. In this study, we investigate the development of the price gap between conventional energy carriers and their renewable substitutes until 2050 as well as a suitable benchmark price, incorporating the societal costs of specific energy carriers. The calculated benchmark prices for natural gas (6.3 ct kWh−1), petrol (9.9 ct kWh−1), and grey hydrogen from steam methane reformation (12 ct kWh−1) are nearly 300% above the actual prices for industry customers in 2020, but below the price peaks of early 2022. In addition, the price gap between conventional fuels and green hydrogen will be completely closed before 2050 for all investigated energy carriers. Furthermore, prognosed future price developments can be considered rather moderate compared to historic and especially to the recent price dynamics in real terms. A gradual implementation of green hydrogen and synthetic fuels next to increasing CO2 prices, however, may temporarily lead to further increasing expenses for energy, but can achieve lower price levels comparable to those of 2020 in the long term

    Mind the Gap—A Socio-Economic Analysis on Price Developments of Green Hydrogen, Synthetic Fuels, and Conventional Energy Carriers in Germany

    No full text
    In recent years, the development of energy prices in Germany has been frequently accompanied by criticism and warnings of socio-economic disruptions. Especially with respect to the electricity sector, the debate on increasing energy bills was strongly correlated with the energy system transition. However, whereas fossil fuels have rapidly increased in price recently, renewable substitutes such as green hydrogen and synthetic fuels also enter the markets at comparatively high prices. On the other hand, the present fossil fuel supply is still considered too low-priced by experts because societal greenhouse gas-induced environmental impact costs are not yet compensated. In this study, we investigate the development of the price gap between conventional energy carriers and their renewable substitutes until 2050 as well as a suitable benchmark price, incorporating the societal costs of specific energy carriers. The calculated benchmark prices for natural gas (6.3 ct kWh−1), petrol (9.9 ct kWh−1), and grey hydrogen from steam methane reformation (12 ct kWh−1) are nearly 300% above the actual prices for industry customers in 2020, but below the price peaks of early 2022. In addition, the price gap between conventional fuels and green hydrogen will be completely closed before 2050 for all investigated energy carriers. Furthermore, prognosed future price developments can be considered rather moderate compared to historic and especially to the recent price dynamics in real terms. A gradual implementation of green hydrogen and synthetic fuels next to increasing CO2 prices, however, may temporarily lead to further increasing expenses for energy, but can achieve lower price levels comparable to those of 2020 in the long term

    From niche to market-an agent-based modeling approach for the economic uptake of electro-fuels (power-to-fuel) in the german energy system

    No full text
    The transition process towards renewable energy systems is facing challenges in both fluctuating electricity generation of photovoltaic and wind power as well as socio-economic disruptions. With regard to sector integration, solutions need to be developed, especially for the mobility and the industry sector, because their ad hoc electrification and decarbonization seem to be unfeasible. Power-to-fuel (P2F) technologies may contribute to bridge the gap, as renewable energy can be transferred into hydrogen and hydrocarbon-based synthetic fuels. However, the renewable fuels production is far from economically competitive with conventional fuels. With a newly developed agent-based model, potential developments in the German energy markets were simulated for a horizon of 20 years from 2016 to 2035. The model was constructed through a participatory modeling process with relevant actors and stakeholders in the field. Model findings suggest that adjusted regulatory framework conditions (e.g., exemptions from electricity surtaxes, accurate prices for CO2-certificates, strong start-up subsidies, and drastic emission reduction quotas) are key factors for economically feasible P2F installations and will contribute to its large-scale integration into the German energy system. While plant capacities do not exceed 0.042 GW in a business-as-usual scenarios, the above-mentioned adjustments lead to plant capacities of at least 3.25 GW in 2035 with concurrent reduction in product prices.Energy & IndustrySystem Engineerin

    Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia

    Get PDF
    With this study, we present first data on the diversity of aerobic methanotrophic bacteria (MOB) in an Arctic permafrost active layer soil of the Lena Delta, Siberia. Applying denaturing gradient gel electrophoresis and cloning of 16S ribosomal ribonucleic acid (rRNA) and pmoA gene fragments of active layer samples, we found a general restriction of the methanotrophic diversity to sequences closely related to the genera Methylobacter and Methylosarcina, both type I MOB. In contrast, we revealed a distinct species-level diversity. Based on phylogenetic analysis of the 16S rRNA gene, two new clusters of MOB specific for the permafrost active layer soil of this study were found. In total, 8 out of 13 operational taxonomic units detected belong to these clusters. Members of these clusters were closely related to Methylobacter psychrophilus and Methylobacter tundripaludum, both isolated from Arctic environments. A dominance of MOB closely related to M. psychrophilus and M. tundripaludum was confirmed by an additional pmoA gene analysis. We used diversity indices such as the Shannon diversity index or the Chao1 richness estimator in order to compare the MOB community near the surface and near the permafrost table. We determined a similar diversity of the MOB community in both depths and suggest that it is not influenced by the extreme physical and geochemical gradients in the active layer
    corecore