1,175 research outputs found

    Static charging of graphene and graphite slabs

    Get PDF
    The effect of external static charging of graphene and its flakes are investigated by using first-principles calculations. While the Fermi level of negatively charged graphene rises and then is quickly pinned by the parabolic, nearly free electron like bands, it moves down readily by removal of electrons from graphene. Excess charges accumulate mainly at both surfaces of graphite slab. Even more remarkable is that Coulomb repulsion exfoliates the graphene layers from both surfaces of positively charged graphite slab. The energy level structure, binding energy and and spin-polarization of specific adatoms adsorbed to a graphene flake can be monitored by charging.Comment: accepted for publication in APL (after 226 days

    Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study

    Get PDF
    This study of elastic and plastic deformation of graphene, silicene, and boron nitride (BN) honeycomb nanoribbons under uniaxial tension determines their elastic constants and reveals interesting features. In the course of stretching in the elastic range, the electronic and magnetic properties can be strongly modified. In particular, it is shown that the band gap of a specific armchair nanoribbon is closed under strain and highest valance and lowest conduction bands are linearized. This way, the massless Dirac fermion behavior can be attained even in a semiconducting nanoribbon. Under plastic deformation, the honeycomb structure changes irreversibly and offers a number of new structures and functionalities. Cagelike structures, even suspended atomic chains can be derived between two honeycomb flakes. Present work elaborates on the recent experiments [C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009)] deriving carbon chains from graphene. Furthermore, the similar formations of atomic chains from BN and Si nanoribbons are predicted.Comment: http://prb.aps.org/abstract/PRB/v81/i2/e02410

    Effects of static charging and exfoliation of layered crystals

    Get PDF
    Using first-principle plane wave method we investigate the effects of static charging on structural, elastic, electronic and magnetic properties of suspended, single layer graphene, graphane, fluorographene, BN and MoS2 in honeycomb structures. The limitations of periodic boundary conditions in the treatment of charged layers are clarified. Upon positive charging the band gaps between the conduction and valence bands increase, but the single layer materials become metallic owing to the Fermi level dipping below the maximum of valence band. Moreover, their bond lengths increase and their in-plane stiffness decreases. As a result, phonons are softened and frequencies of Raman active modes are lowered. High level of charging leads to instability. We showed that wide band gap BN and MoS2 slabs are metallized as a result of electron removal and their outermost layers are exfoliated once the charging exceeds a threshold value.Comment: http://link.aps.org/doi/10.1103/PhysRevB.85.04512

    Domain formation on oxidized graphene

    Get PDF
    Using first-principles calculations within density functional theory we demonstrate that the adsorption of single oxygen atom results in significant electron transfer from graphene to oxygen. This strongly disturbs the charge landscape of the C-C bonds at the proximity. Additional oxygen atoms adsorbing to graphene prefer always the C-C bonds having highest charge density and consequently they have tendency to form domain structure. While oxygen adsorption to one side of graphene ends with significant buckling, the adsorption to both sides with similar domain pattern is favored. The binding energy displays an oscillatory variation and the band gap widens with increasing oxygen coverage. While a single oxygen atom migrates over the C-C bonds on graphene surface, a repulsive interaction prevents two oxygen adatoms from forming an oxygen molecule. Our first-principles study together with finite temperature ab-initio molecular dynamics calculations concludes that oxygen adatoms on graphene cannot desorb easily without influence of external agents.Comment: under revie

    Structures of Fluorinated Graphenes and Their Signatures

    Get PDF
    Recent synthesis of fluorinated graphene introduced interesting stable derivatives of graphene. In particular, fluorographene (CF), namely fully fluorinated chair conformation, is found to display crucial features, such as high mechanical strength, charged surfaces, local magnetic moments due to vacancy defects and a wide band gap rapidly reducing with uniform strain. These properties, as well as structural parameters and electronic densities of states are found to scale with fluorine coverage. However, most of the experimental data reported to date neither for CF, nor for other CnF structures complies with the results obtained from first-principles calculations. In this study, we attempt to clarify the sources of disagreements.Comment: Phys. Rev. B 83, 115432 (2011

    Armchair nanoribbons of silicon and germanium honeycomb structures

    Get PDF
    We present a first-principles study of bare and hydrogen passivated armchair nanoribbons of the puckered single layer honeycomb structures of silicon and germanium. Our study includes optimization of atomic structure, stability analysis based on the calculation of phonon dispersions, electronic structure and the variation of band gap with the width of the ribbon. The band gaps of silicon and germanium nanoribbons exhibit family behavior similar to those of graphene nanoribbons. The edges of bare nanoribbons are sharply reconstructed, which can be eliminated by the hydrogen termination of dangling bonds at the edges. Periodic modulation of the nanoribbon width results in a superlattice structure which can act as a multiple quantum wells. Specific electronic states are confined in these wells. Confinement trends are qualitatively explained by including the effects of the interface. In order to investigate wide and long superlattice structures we also performed empirical tight binding calculations with parameters determined from \textit{ab initio} calculations.Comment: please find the published version in http://link.aps.org/doi/10.1103/PhysRevB.81.19512

    The response of mechanical and electronic properties of graphane to the elastic strain

    Get PDF
    Based on first-principles calculations, we resent a method to reveal the elastic properties of recently synthesized monolayer hydrocarbon, graphane. The in-plane stiffness and Poisson's ratio values are found to be smaller than those of graphene, and its yielding strain decreases in the presence of various vacancy defects and also at high ambient temperature. We also found that the band gap can be strongly modified by applied strain in the elastic range.Comment: accepted version at: http://link.aip.org/link/?APL/96/09191

    Graphene coatings: An efficient protection from oxidation

    Get PDF
    We demonstrate that graphene coating can provide an efficient protection from oxidation by posing a high energy barrier to the path of oxygen atom, which could have penetrated from the top of graphene to the reactive surface underneath. Graphene bilayer, which blocks the diffusion of oxygen with a relatively higher energy barrier provides even better protection from oxidation. While an oxygen molecule is weakly bound to bare graphene surface and hence becomes rather inactive, it can easily dissociates into two oxygen atoms adsorbed to low coordinated carbon atoms at the edges of a vacancy. For these oxygen atoms the oxidation barrier is reduced and hence the protection from oxidation provided by graphene coatings is weakened. Our predictions obtained from the state of the art first-principles calculations of electronic structure, phonon density of states and reaction path will unravel how a graphene can be used as a corrosion resistant coating and guide further studies aiming at developing more efficient nanocoatings.Comment: under review in PRB; http://link.aps.org/doi/10.1103/PhysRevB.85.15544
    corecore