32 research outputs found

    Application of Proteomics to Identify Fertility Markers in Angus Bull Sperm

    Get PDF
    The goal of the study was to ascertain sperm proteins as fertility markers by identifying sperm proteins in Angus bull sperm using proteomics and validate the markers through comparative sperm biology between Angus and Holstein bulls for which there is reliable fertility data available. We aimed to determine proteins differentially expressed in sperm from Angus bulls with different fertility phenotypes. Two-dimensional differential gel electrophoresis with mass-spectrometry, functional gene clusters, canonical pathways and protein networks, using integrated discovery bioinformatics software and ingenuity pathway analysis were used to identify and analyze sperm proteome. We identified 80 proteins that were differentially expressed in sperm of our experimental population. Using computational biology approaches we demonstrated involvement of structural proteins such as outer dense fiber of sperm tails 2 and enzymes including kinases, and phosphatases having functions in essential pathways in glycolysis/gluconeogenesis and free scavenging. The results are significant because analyzed proteins in Angus sperm are determinants of fertility, gene-environment interactions, as well as potential biomarkers for animal breeding

    Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility

    Get PDF
    Background: Fertility is one of the most critical factors controlling biological and financial performance of animal production systems and genetic improvement of lines. The objective of this study was to identify molecular defects in the sperm that are responsible for uncompensable fertility in Holstein bulls. We performed a comprehensive genome wide analysis of single nucleotide polymorphisms (SNP) for bull fertility followed by a second-stage replication in additional bulls for a restricted set of markers. Results: In the Phase I association study, we genotyped the genomic sperm DNA of 10 low-fertility and 10 high-fertility bulls using Bovine SNP Gene Chips containing approximately 10,000 random SNP markers. In these animals, 8,207 markers were found to be polymorphic, 97 of which were significantly associated with fertility (p \u3c 0.01). In the Phase II study, we tested the four most significant SNP from the Phase I study in 101 low-fertility and 100 high-fertility bulls, with two SNPs (rs29024867 and rs41257187) significantly replicated. Rs29024867 corresponds to a nucleotide change of C → G 2,190 bp 3′ of the collagen type I alpha 2 gene on chromosome 4, while the rs41257187 (C → T) is in the coding region of integrin beta 5 gene on chromosome 1. The SNP rs41257187 induces a synonymous (Proline → Proline), suggesting disequilibrium with the true causative locus (i), but we found that the incubation of bull spermatozoa with integrin beta 5 antibodies significantly decreased the ability to fertilize oocytes. Our findings suggest that the bovine sperm integrin beta 5 protein plays a role during fertilization and could serve as a positional or functional marker of bull fertility. Conclusion: We have identified molecular markers associated with bull fertility and established that at least one of the genes harboring such variation has a role in fertility. The findings are important in understanding mechanisms of uncompensatory infertility in bulls, and in other male mammals. The findings set the stage for more hypothesis-driven research aimed at discovering the role of variation in the genome that affect fertility and that can be used to identify molecular mechanisms of development. © 2009 Feugang et al; licensee BioMed Central Ltd

    Application of proteomics to identify fertility markers in angus bull sperm

    No full text
    The goal of the study was to ascertain sperm proteins as fertility markers in Angus bull sperm using proteomics and validating the markers through comparative sperm biology between Angus and Holstein bulls for which there are reliable fertility data available. We aimed to determine proteins differentially expressed in sperm from Angus bulls with different fertility phenotypes. Two-dimensional differential gel electrophoresis with mass-spectrometry, functional gene clusters, canonical pathways and protein networks, using integrated discovery bioinformatics software and ingenuity pathway analysis were used to identify and analyze sperm proteome. We identified 80 proteins that were differentially expressed in sperm of our experimental population. Using computational biology approaches we demonstrated involvement of structural proteins such as outer dense fiber of sperm tails 2 and enzymes including kinases, and phosphatases having functions in essential pathways in glycolysis/gluconeogenesis and free scavenging. The results are significant because analyzed proteins in Angus sperm are determinants of fertility, gene-environment interactions, as well as potential biomarkers for animal breeding

    Application of proteomics to identify fertility markers in angus bull sperm

    No full text
    The goal of the study was to ascertain sperm proteins as fertility markers in Angus bull sperm using proteomics and validating the markers through comparative sperm biology between Angus and Holstein bulls for which there are reliable fertility data available. We aimed to determine proteins differentially expressed in sperm from Angus bulls with different fertility phenotypes. Two-dimensional differential gel electrophoresis with mass-spectrometry, functional gene clusters, canonical pathways and protein networks, using integrated discovery bioinformatics software and ingenuity pathway analysis were used to identify and analyze sperm proteome. We identified 80 proteins that were differentially expressed in sperm of our experimental population. Using computational biology approaches we demonstrated involvement of structural proteins such as outer dense fiber of sperm tails 2 and enzymes including kinases, and phosphatases having functions in essential pathways in glycolysis/gluconeogenesis and free scavenging. The results are significant because analyzed proteins in Angus sperm are determinants of fertility, gene-environment interactions, as well as potential biomarkers for animal breeding

    Amino Acids of Seminal Plasma Associated With Freezability of Bull Sperm

    No full text
    Sperm cryopreservation is an important technique for fertility management, but post-thaw viability of sperm differs among breeding bulls. With metabolites being the end products of various metabolic pathways, the contributions of seminal plasma metabolites to sperm cryopreservation are still unknown. These gaps in the knowledge base are concerning because they prevent advances in the fundamental science of cryobiology and improvement of bull fertility. The objective of this study was to test the hypothesis that seminal plasma amino acids are associated with freezability of bull sperm. To accomplish this objective, amino acid concentrations in seminal plasma from seven bulls of good freezability (GF) and six bulls of poor freezability (PF) were quantified using gas chromatography–mass spectrometry (GC–MS). Multivariate and univariate analyses were performed to identify potential freezability biomarkers. Pathways and networks analyses of identified amino acids were performed using bioinformatic tools. By analyzing and interpreting the results we demonstrated that glutamic acid was the most abundant amino acid in bull seminal plasma with average concentration of 3,366 ± 547.3 nM, which accounts for about 53% of total amino acids. The other most predominant amino acids were alanine, glycine, and aspartic acid with the mean concentrations of 1,053 ± 187.9, 429.8 ± 57.94, and 427 ± 101.3 nM. Pearson’s correlation analysis suggested that phenylalanine concentration was significantly associated with post-thaw viability (r = 0.57, P-value = 0.043). Significant correlations were also found among other amino acids. In addition, partial least squares-discriminant analysis (PLS-DA) bi-plot indicated a distinct separation between GF and PF groups. Phenylalanine had the highest VIP score and was more abundant in the GF groups than in the PF groups. Moreover, pathway and network analysis indicated that phenylalanine contributes to oxidoreductase and antioxidant reactions. Although univariate analysis did not yield significant differences in amino acid concentration between the two groups, these findings are significant that they indicate the potentially important roles of amino acids in seminal plasma, thereby building a foundation for the fundamental science of cryobiology and reproductive biotechnology

    Metabolomic markers of fertility in bull seminal plasma

    No full text
    Metabolites play essential roles in biological systems, but detailed identities and significance of the seminal plasma metabolome related to bull fertility are still unknown. The objectives of this study were to determine the comprehensive metabolome of seminal plasma from Holstein bulls and to ascertain the potential of metabolites as biomarkers of bull fertility. The seminal plasma metabolome from 16 Holstein bulls with two fertility rates were determined by gas chromatography-mass spectrometry (GC-MS). Multivariate and univariate analyses of the data were performed, and the pathways associated with the seminal plasma metabolome were identified using bioinformatics approaches. Sixty-three metabolites were identified in the seminal plasma of all bulls. Fructose was the most abundant metabolite in the seminal fluid, followed for citric acid, lactic acid, urea and phosphoric acid. Androstenedione, 4-ketoglucose, D-xylofuranose, 2-oxoglutaric acid and erythronic acid represented the least predominant metabolites. Partial-Least Squares Discriminant Analysis (PLSDA) revealed a distinct separation between high and low fertility bulls. The metabolites with the greatest Variable Importance in Projection score (VIP \u3e 2) were 2-oxoglutaric acid and fructose. Heat-map analysis, based on VIP score, and univariate analysis indicated that 2-oxoglutaric acid was less (P = 0.02); whereas fructose was greater (P = 0.02) in high fertility than in low fertility bulls. The current study is the first to describe the metabolome of bull seminal plasma using GC-MS and presented metabolites such as 2-oxoglutaric acid and fructose as potential biomarkers of bull fertility

    Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility

    No full text
    Sub-par fertility in bulls is influenced by alterations in sperm chromatin, and it might not be solved with increased sperm concentration in artificial insemination. Appropriate histone retention during sperm chromatin condensation plays critical roles in male fertility. The objective of this study was to determine failures of sperm chromatin condensation associated with abnormal persistence or accessibility of histones by aniline blue (ANBL) test, expression levels, and cellular localizations of one variant and two core histones (H3.3, H2B, and H4 respectively) in the spermatozoa of low-fertility (LF) vs high-fertility (HF) bulls. The expression levels and cellular localizations of histones in spermatozoa were studied using immunoblotting, immunocytochemistry, and staining methods. The bioinformatics focused on the sequence identity and evolutionary distance of these proteins among three mammalian species: bovine, mouse, and human. We demonstrated that ANBL staining was different within the LF (1.73 (0.55, 0.19)) and HF (0.67 (0.17, 0.06)) groups (P\u3c0.0001), which was also negatively correlated with in vivo bull fertility (r= - 0.90, P\u3c0.0001). Although these histones were consistently detectable and specifically localized in bull sperm cells, they were not different between the two groups. Except H2B variants, H3.3 and H4 showed 100% identity and were evolutionarily conserved in bulls, mice and humans. The H2B variants were more conserved between bulls and humans, than in mice. In conclusion, we showed that H2B, H3.3, and H4 were detectable in bull spermatozoa and that sperm chromatin condensation status, changed by histone retention, is related to bull fertility. © 2013 Society for Reproduction and Fertility

    Cellular and Functional Physiopathology of Bull Sperm With Altered Sperm Freezability

    No full text
    The objective of this study was to ascertain the cellular and functional parameters as well as ROS related changes in sperm from bulls with varied sperm freezability phenotypes. Using principal component analysis (PCA), the variables were reduced to two principal components, of which PC1 explained 48% of the variance, and PC2 explained 24% of the variance, and clustered animals into two distinct groups of good freezability (GF) and poor freezability (PF). In ROS associated pathophysiology, there were more dead superoxide anion positive (Dead SO+) sperm in GF bulls than those in PF (15.72 and 12.00%; P = 0.024), and that Dead SO+ and live hydrogen positive cells (live H2O2+) were positively correlated with freezability, respectively (R2 = 0.55, P \u3c 0.0130) and (rs = 0.63, P = 0.0498). Related to sperm functional integrity, sperm from PF bulls had greater dead intact acrosome (DIAC) than those from GF bulls (26.29 and 16.10%; P = 0.028) whereas sperm from GF bulls tended to have greater live intact acrosome (LIAC) than those from PF bulls (64.47 and 50.05%; P = 0.084). Sperm with dead reacted acrosome (DRAC) in PF bulls were greater compared to those in GF (19.27 and 11.48%; P = 0.007). While DIAC (R2 = 0.56, P = 0.0124) and DRAC (R2 = 0.57, P \u3c 0.0111) were negatively correlated with freezability phenotype, LIAC (R2 = 0.36, P = 0.0628) was positively correlated. Protamine deficiency (PRM) was similar between sperm from GF and PF bulls (7.20 and 0.64%; P = 0.206) and (rs = 0.70, P = 0.0251) was correlated with freezability. Sperm characteristics associated with cryotolerance are important for advancing both fundamental andrology and assisted reproductive technologies across mammals

    Sperm protamine-status correlates to the fertility of breeding bulls

    No full text
    During fertilization, spermatozoa make essential contributions to embryo development by providing oocyte activating factors, centrosomal components, and paternal chromosomes. Protamines are essential for proper packaging of sperm DNA; however, in contrast to the studies of oocyte-related female infertility, the influence of sperm chromatin structure on male infertility has not been evaluated extensively. The objective of this study was to determine the sperm chromatin content of bull spermatozoa by evaluating DNA fragmentation, chromatin maturity/protamination, PRM1 protein status, and nuclear shape in spermatozoa from bulls with different fertility. Relationships between protamine 1 (PRM1) and the chromatin integrity were ascertained in spermatozoa from Holstein bulls with varied (high vs. low) but acceptable fertility. Sperm DNA fragmentation and chromatin maturity (protamination) were tested using Halomax assay and toluidine blue staining, respectively. The PRM1 content was assayed using Western blotting and in-gel densitometry, flow cytometry, and immunocytochemistry. Fragmentation of DNA was increased and chromatin maturity significantly reduced in spermatozoa from low-fertility bulls compared to those from high-fertility bulls. Field fertility scores of the bulls were negatively correlated with the percentage of spermatozoa displaying reduced protamination and fragmented DNA using toluidine blue and Halomax, respectively. Bull fertility was also positively correlated with PRM1 content by Western blotting and flow cytometry. However, detection of PRM1 content by Western blotting alone was not predictive of bull fertility. In immunocytochemistry, abnormal spermatozoa showed either a lack of PRM1 or scattered localization in the apical/acrosomal region of the nuclei. The nuclear shape was distorted in spermatozoa from low-fertility bulls. In conclusion, we showed that inadequate amount and localization of PRM1 were associated with defects in sperm chromatin structure, coinciding with reduced fertility in bulls. These findings are highly significant because they reveal molecular and morphological phenotypes of mammalian spermatozoa that influence fertility
    corecore