643 research outputs found

    Turnstile behaviour of the Cooper-pair pump

    Full text link
    We have experimentally studied the behaviour of the so-called Cooper pair pump (CPP) with three Josephson junctions, in the limit of small Josephson coupling EJ < EC. These experiments show that the CPP can be operated as a traditional turnstile device yielding a gate-induced current 2ef in the direction of the bias voltage, by applying an RF-signal with frequency f to the two gates in phase, while residing at the degeneracy node of the gate plane. Accuracy of the CPP during this kind of operation was about 3% and the fundamental Landau-Zener limit was observed to lie above 20 MHz. We have also measured the current pumped through the array by rotating around the degeneracy node in the gate plane. We show that this reproduces the turnstile-kind of behavior. To overcome the contradiction between the obtained e-periodic DC-modulation and a pure 2e-behaviour in the RF-measurements, we base our observations on a general principle that the system always minimises its energy. It suggests that if the excess quasiparticles in the system have a freedom to tunnel, they will organize themselves to the configuration yielding the highest current.Comment: 29 pages, 16 figures, uses REVTeX and graphicx-packag

    Molecular coupling of light with plasmonic waveguides

    Full text link
    We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the diffraction limit. Moreover, the use of molecules has the potential for integration with molecular electronics and for the use of molecular self-assembly in fabrication. Our results constitute a proof-of-principle demonstration of a plasmonic waveguide where signal in- and outcoupling is done by molecules.Comment: 9 pages, 5 figure

    Method for finding the critical temperature of the island in a SET structure

    Full text link
    We present a method to measure the critical temperature of the island of a superconducting single electron transistor. The method is based on a sharp change in the slope of the zero-bias conductance as a function of temperature. We have used this method to determine the superconducting phase transition temperature of the Nb island of an superconducting single electron transistor with Al leads. We obtain TcNbT_\mathrm{c}^\mathrm{Nb} as high as 8.5 K and gap energies up to ΔNb1.45\Delta_\mathrm{Nb}\simeq 1.45 meV. By looking at the zero bias conductance as a function of magnetic field instead of temperature, also the critical field of the island can be determined. Using the orthodox theory, we have performed extensive numerical simulations of charge transport properties in the SET at temperatures comparable to the gap, which match very well the data, therefore providing a solid theoretical basis for our method.Comment: 4 pages, 2 figure

    High-Yield of Memory Elements from Carbon Nanotube Field-Effect Transistors with Atomic Layer Deposited Gate Dielectric

    Get PDF
    Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. This study includes 94 CNT FET samples, providing an unprecedented basis for statistics on the hysteresis seen in five different CNT-gate configurations. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO2_{2} and TiO2_{2} in a triple-layer configuration, we achieve the first CNT FETs with consistent and narrowly distributed memory effects in their transfer characteristics.Comment: 6 pages, 3 figures; added one reference, text reformatted with smaller addition

    Cooper-pair resonances and subgap Coulomb blockade in a superconducting single-electron transistor

    Full text link
    We have fabricated and measured superconducting single-electron transistors with Al leads and Nb islands. At bias voltages below the gap of Nb we observe clear signatures of resonant tunneling of Cooper pairs, and of Coulomb blockade of the subgap currents due to linewidth broadening of the energy levels in the superconducting density of states of Nb. The experimental results are in good agreement with numerical simulations.Comment: 4 pages, 3 figure

    MYC is not detected in highly proliferating normal spermatogonia but is coupled with CIP2A in testicular cancers

    Get PDF
    High MYC expression is linked to proliferative activity in most normal tissues and in cancer. MYC also supports self-renewal and proliferation of many types of tissue progenitor cells. Cancerous inhibitor of PP2A (CIP2A) promotes MYC phosphorylation and activity during intestinal crypt regeneration in vivo and in various cancers. CIP2A also supports male germ cell proliferation in vivo. However, the role of MYC in normal germ cell proliferation and spermatogonial progenitor self-renewal is currently unclear.  Here, we demonstrate that male germ cells are CIP2A-positive but lack detectable levels of MYC protein; whereas MYC is highly expressed in Leydig cells and peritubular myoid cells contributing thereby to the testicular stem cell niche. On the other hand,  MYC was co-expressed with CIP2A in testicular cancers. These results demonstrate that CIP2A and MYC are spatially uncoupled in the regulation of spermatogenesis, but functional relationship between these two human oncoproteins is established during testicular cancer transformation. We propose that further analysis of mechanisms of MYC silencing in spermatogonial progenitors may reveal novel fundamental information relevant to understanding of MYC expression in cancer. </p

    Trapping of 27 bp - 8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis

    Get PDF
    Dielectrophoretic trapping of six different DNA fragments, sizes varying from the 27 to 8416 bp, has been studied using confocal microscopy. The effect of the DNA length and the size of the constriction between nanoscale fingertip electrodes on the trapping efficiency have been investigated. Using finite element method simulations in conjunction with the analysis of the experimental data, the polarizabilities of the different size DNA fragments have been calculated for different frequencies. Also the immobilization of trapped hexanethiol- and DTPA-modified 140 nm long DNA to the end of gold nanoelectrodes was experimentally quantified and the observations were supported by density functional theory calculations.Comment: 17 pages (1 column version), 8 figure

    Onset and progression of puberty in Klinefelter syndrome

    Get PDF
    Objective: Klinefelter syndrome (KS) (47,XXY and variants, KS) is the most common sex chromosome disorder in humans. However, little is known about the onset and progression of puberty in patients with KS. In this study, we describe the onset and progression of puberty in a large series of boys with KS in a single tertiary centre. Design and Patients: Retrospective data (Tanner stages, testicular length, testosterone supplementation, levels of luteinizing hormone [LH] and testosterone) before possible testosterone treatment on 72 KS patients with 47,XXY karyotype were reviewed, and G (n = 59 patients) and P (n = 56 patients) stages were plotted on puberty nomograms. Measurements and Results: One boy had a delayed onset of puberty, as he was at the G1 stage at the age of 13.8 years (-2.2 SDs). No observations of delay were made of boys at Stage G2. The progression of G stages was within normal limits in the majority of patients; only few boys were late at G3 (4.1%; 1 out of 24) and G4 (7.4%; 2 out of 27). Testosterone supplementation was started at the average age of 15.5 years to 35 boys (47%), 2 of whom were over 18 years old. LH level was on average 18.2 IU/L (SD: 6.3 IU/L) and testosterone 9.1 nmol/L (SD: 3.1 nmol/L) when testosterone supplementation was started. Conclusions: Our results suggest that puberty starts within the normal age limits in boys with KS, and testosterone supplementation is not needed for the initial pubertal progression in the majority of patients.Peer reviewe
    corecore