188 research outputs found

    Wigner Oscillators, Twisted Hopf Algebras and Second Quantization

    Full text link
    By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U^F(h) are shown to be induced from a more fundamental Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of the super-algebra osp(1|2n). We also discuss the possible implications in the context of quantum statistics.Comment: 23 page

    The Signature Triality of Majorana-Weyl Spacetimes

    Get PDF
    Higher dimensional Majorana-Weyl spacetimes present space-time dualities which are induced by the Spin(8) triality automorphisms. Different signature versions of theories such as 10-dimensional SYM's, superstrings, five-branes, F-theory, are shown to be interconnected via the S_3 permutation group. Bilinear and trilinear invariants under space-time triality are introduced and their possible relevance in building models possessing a space-versus-time exchange symmetry is discussed. Moreover the Cartan's ``vector/chiral spinor/antichiral spinor" triality of SO(8) and SO(4,4) is analyzed in detail and explicit formulas are produced in a Majorana-Weyl basis. This paper is the extended version of hep-th/9907148.Comment: 28 pages, LaTex. Extended version of hep-th/990714

    Lie-Algebraic Characterization of 2D (Super-)Integrable Models

    Get PDF
    It is pointed out that affine Lie algebras appear to be the natural mathematical structure underlying the notion of integrability for two-dimensional systems. Their role in the construction and classification of 2D integrable systems is discussed. The super- symmetric case will be particularly enphasized. The fundamental examples will be outlined.Comment: 6 pages, LaTex, Talk given at the conference in memory of D.V. Volkov, Kharkhov, January 1997. To appear in the proceeding

    An Unfolded Quantization for Twisted Hopf Algebras

    Full text link
    In this talk I discuss a recently developed "Unfolded Quantization Framework". It allows to introduce a Hamiltonian Second Quantization based on a Hopf algebra endowed with a coproduct satisfying, for the Hamiltonian, the physical requirement of being a primitive element. The scheme can be applied to theories deformed via a Drinfeld twist. I discuss in particular two cases: the abelian twist deformation of a rotationally invariant nonrelativistic Quantum Mechanics (the twist induces a standard noncommutativity) and the Jordanian twist of the harmonic oscillator. In the latter case the twist induces a Snyder non-commutativity for the space-coordinates, with a pseudo-Hermitian deformed Hamiltonian. The "Unfolded Quantization Framework" unambiguously fixes the non-additive effective interactions in the multi-particle sector of the deformed quantum theory. The statistics of the particles is preserved even in the presence of a deformation.Comment: 9 pages. Talk given at QTS7 (7th Int. Conf. on Quantum Theory and Symmetries, Prague, August 2011

    On the Construction and the Structure of Off-Shell Supermultiplet Quotients

    Full text link
    Recent efforts to classify representations of supersymmetry with no central charge have focused on supermultiplets that are aptly depicted by Adinkras, wherein every supersymmetry generator transforms each component field into precisely one other component field or its derivative. Herein, we study gauge-quotients of direct sums of Adinkras by a supersymmetric image of another Adinkra and thus solve a puzzle from Ref.[2]: The so-defined supermultiplets do not produce Adinkras but more general types of supermultiplets, each depicted as a connected network of Adinkras. Iterating this gauge-quotient construction then yields an indefinite sequence of ever larger supermultiplets, reminiscent of Weyl's construction that is known to produce all finite-dimensional unitary representations in Lie algebras.Comment: 20 pages, revised to clarify the problem addressed and solve

    On Supergroups with Odd Clifford Parameters and Supersymmetry with Modified Leibniz Rule

    Full text link
    We investigate supergroups with Grassmann parameters replaced by odd Clifford parameters. The connection with non-anticommutative supersymmetry is discussed. A Berezin-like calculus for odd Clifford variables is introduced. Fermionic covariant derivatives for supergroups with odd Clifford variables are derived. Applications to supersymmetric quantum mechanics are made. Deformations of the original supersymmetric theories are encountered when the fermionic covariant derivatives do not obey the graded Leibniz property. The simplest non-trivial example is given by the N=2 SQM with a real (1,2,1)(1,2,1) multiplet and a cubic potential. The action is real. Depending on the overall sign ("Euclidean" or "Lorentzian") of the deformation, a Bender-Boettcher pseudo-hermitian hamiltonian is encountered when solving the equation of motion of the auxiliary field. A possible connection of our framework with the Drinfeld twist deformation of supersymmetry is pointed out.Comment: Final version to be published in Int. J. Mod. Phys. A; 20 page
    corecore