5 research outputs found

    Differential regulation of anti-inflammatory genes by p38 MAP kinase and MAP kinase kinase 6.

    Get PDF
    BackgroundConventional p38α inhibitors have limited efficacy in rheumatoid arthritis, possibly because p38 blockade suppresses the counter-regulatory mechanisms that limit inflammation. In contrast, targeting the upstream MAP kinase kinases, MKK3 and MKK6, partially maintains p38-mediated anti-inflammatory responses in bone marrow-derived macrophages (BMDM). In this study, we explored the mechanisms that preserve anti-inflammatory gene expression by evaluating differential regulation of IL-10 and p38-dependent anti-inflammatory genes in MKK3-/-, MKK6-/-, and p38 inhibitor-treated wildtype cells.MethodsBMDM from wild type (WT), MKK3-/-, and MKK6-/- mice were pre-treated with p38 inhibitor SB203580 (SB), JNK inhibitor SP600125 (SP), and/or ERK inhibitor PD98059 (PD) and stimulated with LPS. Supernatant protein levels were measured by multiplex bead immunoassay. mRNA expression was determined by qPCR and protein expression by Western blot analysis. De novo IL-10 mRNA synthesis was quantified in cells treated with ethynyl-uridine and LPS followed by reverse transcription and qPCR. mRNA half-life was measured in LPS-treated cells that were then incubated with actinomycin D ± SB203580.ResultsPre-treatment of WT BMDM with p38 inhibitor significantly reduced IL-10 production in the three groups, while ERK and JNK inhibitors had minimal effects. IL-10 production was significantly decreased in MKK3-/- BMDM compared with either WT or MKK6-/- cells. IL-10 mRNA expression was modestly reduced in MKK3-/- BMDM but was preserved in MKK6-/- cells compared with WT. De novo IL-10 mRNA synthesis was inhibited in MKK3-/- and p38 inhibitor pre-treated cells, but not MKK6-/- cells compared with WT. IL-10 mRNA half-life was markedly reduced in p38 inhibitor-treated WT cells while MKK-deficiency had minimal effect. DUSP1 mRNA levels were preserved in MKK-deficient cells but not in p38 inhibitor-treated WT cells. Tristetraprolin mRNA and protein levels were reduced in p38 inhibitor-treated WT cells compared with MKK6-/- cells.ConclusionUnlike p38-inhibition, the absence of MKK6 mostly preserves IL-10 and TTP protein expression in BMDM. MKK6-deficiency also spares DUSP1 and IL-1RA, which are key negative regulators of the inflammatory response. Together, these data suggest that MKK6 is a potential therapeutic target in RA

    Novel Phosphoinositide 3-Kinase δ

    No full text

    Regulation of the Cell Cycle and Inflammatory Arthritis by the Transcription Cofactor LBH

    No full text
    Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) display unique aggressive behavior, invading the articular cartilage and promoting inflammation. Using an integrative analysis of RA risk alleles, the transcriptome and methylome in RA FLS, we recently identified the limb bud and heart development ( ) gene as a key dysregulated gene in RA and other autoimmune diseases. Although some evidence suggests that LBH could modulate the cell cycle, the precise mechanism is unknown and its impact on inflammation in vivo has not been defined. Our cell cycle analysis studies show that LBH deficiency in FLS leads to S-phase arrest and failure to progress through the cell cycle. LBH-deficient FLS had increased DNA damage and reduced expression of the catalytic subunit of DNA polymerase α. Decreased DNA polymerase α was followed by checkpoint arrest due to phosphorylation of checkpoint kinase 1. Because DNA fragments can increase arthritis severity in preclinical models, we then explored the effect of LBH deficiency in the K/BxN serum transfer model. knockout exacerbated disease severity, which is associated with elevated levels of IL-1β and checkpoint kinase 1 phosphorylation. These studies indicate that LBH deficiency induces S-phase arrest that, in turn, exacerbates inflammation. Because gene variants are associated with type I diabetes mellitus, systemic lupus erythematosus, RA, and celiac disease, these results suggest a general mechanism that could contribute to immune-mediated diseases
    corecore