5 research outputs found

    Tree shrews (Tupaia belangeri) exhibit novelty preference in the novel location memory task with 24-h retention periods

    Get PDF
    Novelty preference is pervasive in mammalian species, and describes an inherent tendency to preferentially explore novelty. The novel location memory task studied here assesses the ability of animals to form accurate memories of a spatial configuration, consisting of several identical objects placed within an arena. Tree shrews were first familiarized with a particular object configuration during several sessions, and then an object was displaced during a test session. Tree shrews exhibited enhanced exploration when confronted with this novel configuration. The most reliable indicator associated with novelty preference was an enhancement in directed exploration towards the novel object, although we also observed a non-specific overall increase in exploration in one experiment. During the test session, we also observed an exploration of the location, which had previously been occupied by the displaced object, an effect termed empty quadrant. Our behavioral findings suggest multiple stages of spatial memory formation in tree shrews that are associated with various forms of behavioral responses to novelty. Reduced novelty preference has been linked to major depressive disorder in human patients. Given the established social conflict depression model in tree shrews, we anticipate that the study of the neural circuits of novelty preference and their malfunction during depression may have implications for understanding or treating depression in humans

    Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers

    Full text link
    It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM) representation of hands and feet using voxel-based morphometry as well as on fractional anisotropy (FA) of the corticospinal tract by means of diffusion tensor imaging-based fibre tractography. As predicted, GM volume was increased in hand areas of handball players, whereas ballet dancers showed increased GM volume in foot areas. Compared to handball players, ballet dancers showed decreased FA in both fibres connecting the foot and hand areas, but they showed lower FA in fibres connecting the foot compared to their hand areas, whereas handball players showed lower FA in fibres connecting the hand compared to their foot areas. Our results suggest that structural adaptations are sport-specific and are manifested in brain regions associated with the neural processing of sport-specific skills. We believe this enriches the plasticity research in general and extends our knowledge of sport expertise in particular

    Motor cortex excitability is reduced during freezing of upper limb movement in Parkinson's disease

    No full text
    Whilst involvement of the motor cortex in the phenomenon of freezing in Parkinson’s disease has been previously suggested, few empiric studies have been conducted to date. We investigated motor cortex (M1) excitability in eleven right-handed Parkinson’s disease patients (aged 69.7 ± 9.6 years, disease duration 11.2 ± 3.9 years, akinesia-rigidity type) with verified gait freezing using a single-pulse transcranial magnetic stimulation (TMS) repetitive finger tapping paradigm. We delivered single TMS pulses at 120% of the active motor threshold at the ‘ascending (contraction)’ and ‘descending (relaxation)’ slope of the tap cycle during i) regular tapping, ii) the transition period of the three taps prior to a freeze and iii) during freezing of upper limb movement. M1 excitability was modulated along the tap cycle with greater motor evoked potentials (MEPs) during ‘ascending’ than ‘descending’. Furthermore, MEPs during the ‘ascending’ phase of regular tapping, but not during the transition period, were greater compared to the MEPs recorded throughout a freeze. Neither force nor EMG activity 10–110 s before the stimulus predicted MEP size. This piloting study suggests that M1 excitability is reduced during freezing and the transition period preceding a freeze. This supports that M1 excitability is critical to freezing in Parkinson’s disease

    Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome

    Full text link
    AIMS: Takotsubo syndrome (TTS) is characterized by acute left ventricular dysfunction often triggered by emotional or physical stress. Severe activation of the sympathetic nervous system with catecholamine release caused by a dysfunctional limbic system has been proposed as a potential mechanism. We hypothesize that brain regions responsible for autonomic integration and/or limbic processing might be involved in the development of TTS. Here, we investigated alterations in resting state functional connectivity in TTS patients compared with healthy controls. METHODS AND RESULTS: Using brain functional magnetic resonance imaging (fMRI), resting state functional connectivity has been assessed in 15 subjects with TTS and 39 healthy controls. Network-based statistical analyses were conducted to identify subnetworks with altered resting state functional connectivity. Sympathetic and parasympathetic networks have been constructed in addition to the default mode network and whole-brain network. We found parasympathetic- and sympathetic-associated subnetworks both showing reduced resting state functional connectivity in TTS patients compared with controls. Important brain regions constituting parasympathetic- and sympathetic-associated subnetworks included the amygdala, hippocampus, and insula as well as cingulate, parietal, temporal, and cerebellar regions. Additionally, the default mode network as well as limbic regions in the whole-brain analysis demonstrated reduced resting state functional connectivity in TTS, including the hippocampus, parahippocampal, and medial prefrontal regions. CONCLUSION: For the first time, we demonstrate hypoconnectivity of central brain regions associated with autonomic functions and regulation of the limbic system in patients with TTS. These findings suggest that autonomic-limbic integration might play an important role in the pathophysiology and contribute to the understanding of TTS
    corecore