8 research outputs found

    Analysis of the lactic acid bacteria microflora in traditional Caucasus cow's milk cheeses

    Get PDF
    A total of 157 lactic acid bacteria (LAB) were isolated from three hand-made cheeses taken from different households in the region of the Caucasus Mountains. The cheeses were manufactured from cow's milk without the addition of a starter culture. The isolates of LAB were characterized by subjecting them to phenotypic and genotypic tests. The results of identification of LAB indicate that the examined cheeses contained 10 species, viz., Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus farciminis, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. mesenteroides, Leuconostoc pseudomesenteroides, Enterococcus faecium, and Enterococcus faecalis. The strains within the species L. plantarum, L. arizonensis, L. paraplantarum, L. farciminis, and L. pseudomesenteroides showed good proteolytic activity

    Translational fidelity in Escherichia coli: Antagonistic effects of neaA and ramC gene products on the ribosome function

    No full text
    A double mutant carrying the ramC and neaA mutations has been constructed by Plvir transductions. This mutant, which carries alterations in ribosomal proteins S5 and S17, behaves like to wildtype bacteria in the following respects: it no longer exhibits the restriction of informational suppressors normally associated with the neaA mutation (altered protein S17); ribosomes from the double mutant show increased intrinsic and neamine-induced misreading in vitro in contrast to ribosomes from the neaA strain, although still less than the misreading level of ribosomes from the ramC (altered protein S5) strain. These properties suggest that ribosomal proteins S5 and S17 act cooperatively to balance translational fidelity. Ā© 1980 Springer-Verlag.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Effect of methionine and cysteine deprivation on growth of different natural isolates of Lactobacillus spp. in chemically defined media

    Get PDF
    The purpose of this study was to determine the ability of natural isolates of lactobacilli from different ecological niches to grow in a chemically defined medium in the presence or absence of sulphur-containing amino acids, methionine and/or cysteine. The obtained results indicate that cysteine is essential for growth of L. paracasei subsp. paracasei BGHN14 and BGSJ2-8, while methionine is essential for isolates BGHN40, BGCG31, and BGHV54T of the species L. plantarum. Methionine is also essential for growth of L. rhamnosus BGHV58T. Other analyzed strains, such as L. plantarum BGSJ3-18, BGZB19, BGHV52Ta, and BGHV43T, require the presence of both amino acids for their growth

    Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151

    No full text
    Abstract ā€” Pseudomonas sp. ATCC19151 harbors a gene encoding a putative alkylsulfatase (sdsA). Here we report a growth ability of this strain in minimal media containing 0.5, 0.75, and 1 % sodium dodecyl sulfate as the sole carbon source. The most prominent growth was detected for the minimal medium with 0.5 % SDS, so this concentration of SDS was used to monitor Pseudomonas sp. ATCC19151 SDS biodegradation dynamics. Bacterial growth coincided with the disappearance of SDS. Antibiotic susceptibility was tested as well. Pseudomonas sp. ATCC19151 was resistant to six out of nine tested antibiotics, including ampicillin, tetracycline, chloramphenicol, tobramycin, nalidixic acid, and gentamycin

    Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates

    No full text
    Introduction: The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Methods: Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Results: Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Conclusion: Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains

    DOI:10.2298/ABS1002231K A SUCCESSFUL USE OF A NEW SHUTTLE CLONING VECTOR PA13 FOR THE CLONING OF THE BACTERIOCINS BACSJ and ACIDOCIN 8912

    No full text
    These authors equally contributed to this work Abstract ā€“ The aim of this paper was to research the molecular cloning of genes encoding the novel bacteriocin BacSJ from Lactobacillus paracasei subsp. paracasei BGSJ2-8 by using a newly constructed shuttle cloning vector pA13. A new shuttle-cloning vector, pA13, was constructed and successfully introduced into Escherichia coli, Lactobacillus and Lactococcus strains, showing a high segregational and structural stability in all three hosts. The natural plasmid pSJ2-8 from L. paracasei subsp. paracasei BGSJ2-8 was cloned in the pA13 using BamHI, obtaining the construct pB5. Sequencing and in silico analysis of the pB5 revealed 15 open reading frames (ORF). Plasmid pSJ2-8 harbors the genes encoding the production of two bacteriocins, BacSJ and acidocin 8912. The combined N-terminal amino acid sequencing of BacSJ in combination with DNA sequencing of the bacSJ2-8 gene enabled the determination of the primary structure of a bacteriocin BacSJ. The production and functional expression of BacSJ in homologous and heterologous hosts suggest that bacSJ2-8 and bacSJ2-8i together with the genes encoding the ABC transporter and accessory protein are the minimal requirement for the production of BacSJ. Biochemical and genetic analyses showed that BacSJ belongs to the class II bacteriocins. The shuttle cloning vector pA13 could be used as a tool for genetic manipulations in lactobacilli and lactococci
    corecore