69 research outputs found
The Spectral Type of the Ionizing Stars and the Infrared Fluxes of HII Regions
The 20 cm radio continuum fluxes of 91 HII regions in a previously compiled
catalog have been determined. The spectral types of the ionizing stars in 42
regions with known distances are estimated. These spectral types range from
B0.5 to O7, corresponding to effective temperatures of 29 000-37 000 K. The
dependences of the infrared (IR) fluxes at 8, 24, and 160 m on the 20 cm
flux are considered. The IR fluxes are used as a diagnostic of heating of the
matter, and the radio fluxes as measurements of the number of ionizing photons.
It is established that the IR fluxes grow approximately linearly with the radio
flux. This growth of the IR fluxes probably indicates a growth of the mass of
heated material in the envelope surrounding the HII region with increasing
effective temperature of the star.Comment: 16, pages, 10 figures, published in Astronomy Report
Global photometric analysis of galactic regions of ionized hydrogen
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΏΠΎΡΠΎΠΊΠ°Ρ
ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΡΡ
ΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠ»ΠΎΡΠ°Ρ
Π΄Π»Ρ 99 Π·ΠΎΠ½ HII, Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
Π² ΠΊΠ°ΡΠ°Π»ΠΎΠ³ Π’ΠΎΠΏΡΠΈΠ΅Π²ΠΎΠΉ ΠΈ Π΄Ρ. (2017). ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠΉ Π΄ΠΎΠ»ΠΈ ΠΠΠ£ (qPAH) ΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² ΡΠ»ΡΡΡΠ°ΡΠΈΠΎΠ»Π΅ΡΠΎΠ²ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΏΠΎ ΡΠ΅ΡΠΊΠ΅ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π² ΡΡΠ°ΡΡΠ΅ ΠΡΠ΅ΠΉΠ½Π° ΠΈ ΠΠΈ (2007).We analyze data on emission fluxes in different infrared photometric bands for 99 HII regions, included in the catalog by Topchieva et al. (2017). A mass fraction of PAH (qPAH) and the ultraviolet radiation intensity are estimated using the grid of models, presented in Draine and Li (2007).Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΠ€Π
Determination of Physical Parameters of Infrared Radiation in HII Regions
We present fluxes from inner parts and outer rings of the IR ring nebulae at seven wavelengths from 8 to 500 ΞΌm based on Spitzer and Herschel data. We define spectral indices, which are the best indicators of dust temperature and small dust mass fraction.ΠΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΏΠΎΡΠΎΠΊΠΈ ΠΎΡ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ ΠΈ Π²Π½Π΅ΡΠ½ΠΈΡ
ΠΊΠΎΠ»Π΅Ρ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΡΡ
ΠΊΠΎΠ»ΡΡΠ΅Π²ΡΡ
ΡΡΠΌΠ°Π½Π½ΠΎΡΡΠ΅ΠΉ Π½Π° ΡΠ΅ΠΌΠΈ Π΄Π»ΠΈΠ½Π°Ρ
Π²ΠΎΠ»Π½ ΠΎΡ 8 Π΄ΠΎ 500 ΠΌΠΊΠΌ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π°Π½Π½ΡΡ
Spitzer ΠΈ Herschel. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΠ½Π΄Π΅ΠΊΡΡ, ΡΠ²Π»ΡΡΡΠΈΠ΅ΡΡ Π»ΡΡΡΠΈΠΌΠΈ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ°ΠΌΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΠ»ΠΈ ΠΈ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠΉ Π΄ΠΎΠ»ΠΈ ΠΌΠ΅Π»ΠΊΠΈΡ
ΠΏΡΠ»ΠΈΠ½ΠΎΠΊ.Π Π°Π±ΠΎΡΠ° ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½Π° Π³ΡΠ°Π½ΡΠΎΠΌ Π Π€Π€Π 18-32-00384 ΠΈ Π³ΡΠ°Π½ΡΠΎΠΌ Π€ΠΎΠ½Π΄Π° ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ Β«ΠΠΠΠΠ‘Β»
IR ring nebulae in the Milky Way and M33 galaxies
ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΠ²Π½ΡΡ
Π·Π²Π΅Π·Π΄ Π² Π½Π°ΡΠ΅ΠΉ ΠΈ Π΄ΡΡΠ³ΠΈΡ
Π³Π°Π»Π°ΠΊΡΠΈΠΊΠ°Ρ
ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ²ΡΠ·Π°ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π΄Π»Ρ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ Π·Π²Π΅Π·Π΄ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ΅Π»ΠΎΠΌ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΡΠΌ ΠΊΠΎΠ»ΡΡΠ΅Π²ΡΠΌ ΡΡΠΌΠ°Π½Π½ΠΎΡΡΡΠΌ (ΠΠΠΠ’) Π² ΠΠ°Π»Π°ΠΊΡΠΈΠΊΠ΅ ΠΈ Π³Π°Π»Π°ΠΊΡΠΈΠΊΠ΅ Π33, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π° Π½Π΅Π΄Π°Π»Π΅ΠΊΠΎ ΠΎΡ Π½Π°Ρ ΠΈ Π² ΠΊΠ°ΡΡΠΈΠ½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΡΠ΄ΠΎΠ±Π½Π° Π΄Π»Ρ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠΊΠΎΠ² Π΄Π»Ρ 258 ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π·Π²Π΅Π·Π΄ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² Π33, Π²Π½Π΅Π³Π°Π»Π°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π·Π²Π΅Π·Π΄ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π΄Π»Ρ ΠΠΠΠ’ Π² Π½Π°ΡΠ΅ΠΉ ΠΠ°Π»Π°ΠΊΡΠΈΠΊΠ΅. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°ΡΡΠ΅Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ DustEM.Studying the formation of massive stars in our Galaxy and in other galaxies is one of the possibilities to connect the information obtained for the regions of star formation in general. This study presents statistical and theoretical data on infrared ring nebulae (IRRN) in our Galaxy and the galaxy M33, which is located not far from us and in the plane of sky, which is convenient for selecting individual objects. In this paper, comparisons of fluxes for 258 star-forming complexes in M33, extragalactic of star formation complexes, and for IRRN in our Galaxy are shown. A theoretical calculation of the distribution of polycyclic aromatic hydrocarbons using DustEM has been carried out.Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ Π³ΡΠ°Π½ΡΠ° Π Π€Π€Π 20-02-00643 Π. Π’Π°ΠΊΠΆΠ΅ Π΄Π°Π½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° Π±ΡΠ»Π° ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½Π° Π³ΡΠ°Π½ΡΠΎΠΌ Π€ΠΎΠ½Π΄Π° ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ Β«ΠΠΠΠΠ‘Β»
Spectral Types of Ionizing Stars and the Infrared Morphology of HII Regions
A previously developed catalog is presented, which includes 99 regions of ionized hydrogen (HII). Results of the flux measurements in the infrared (IR) and radio continua in the direction of the HII region are presented. Estimated fluxes of IR emission are compared to results from other catalogs. Spectral types of ionizing stars are determined for 42 regions with distance estimates available.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ ΡΠ°Π½Π΅Π΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π°, Π²ΠΊΠ»ΡΡΠ°ΡΡΠ΅Π³ΠΎ 99 ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΠΈΠΎΠ½ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π° (HII). ΠΡΡΠ°ΠΆΠ΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠΊΠΎΠ² Π² ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΌ (ΠΠ) ΠΈ ΡΠ°Π΄ΠΈΠΎΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ°Ρ
Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΠ±Π»Π°ΡΡΠΈ HII. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡΠ΅Π½ΠΎΠΊ ΠΠ-ΠΏΠΎΡΠΎΠΊΠΎΠ² Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π°ΠΌΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ ΠΈΠΎΠ½ΠΈΠ·ΡΡΡΠΈΡ
Π·Π²Π΅Π·Π΄ 42 ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΡΡ
ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΉ.Π Π°Π±ΠΎΡΠ° ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½Π° Π³ΡΠ°Π½ΡΠΎΠΌ Π Π€Π€Π 17-02-00521
Effect of Dust Evaporation and Thermal Instability on Temperature Distribution in a Protoplanetary Disk
The thermal instability of accretion disks is widely used to explain the
activity of cataclysmic variables, but its development in protoplanetary disks
has been studied in less detail. We present a semi-analytical stationary model
for calculating the midplane temperature of a gas and dust disk around a young
star. The model takes into account gas and dust opacities, as well as the
evaporation of dust at temperatures above 1000 K. Using this model, we
calculate the midplane temperature distributions of the disk under various
assumptions about the source of opacity and the presence of dust. We show that
when all considered processes are taken into account, the heat balance equation
in the region r<1 au has multiple temperature solutions. Thus, the conditions
for thermal instability are met in this region. To illustrate the possible
influence of instability on the accretion state in a protoplanetary disk, we
consider a viscous disk model with alpha parameterization of turbulent
viscosity. We show that in such a model the disk evolution is non-stationary,
with alternating phases of accumulation of matter in the inner disk and its
rapid accretion onto the star, leading to an episodic accretion pattern. These
results indicate that this instability needs to be taken into account in
evolutionary models of protoplanetary disks.Comment: Published in Astronomy Reports Vol. 67, No. 5, pp. 470-482 (2023
Infrared Morphology of Regions of Ionized Hydrogen
A search for infrared ring nebulae associated with regions of ionized
hydrogen has been carried out. The New GPS Very Large Array survey at 20 cm
forms the basis of the search, together with observations obtained with the
Spitzer Space Telescope at 8 and 24 m and the Herschel Space Telescope at
70 m. Objects having ring-like morphologies at 8 m and displaying
extended emission at 20 cm were selected visually. Emission at 24 m having
the form of an inner ring or central peak is also observed in the selected
objects. A catalog of 99 ring nebulae whose shapes at 8 and 70 m are well
approximated by ellipses has been compiled. The catalog contains 32 objects
whose shapes are close to circular (eccentricities of the fitted ellipses at 8
m no greater than 0.6, angular radius exceeding 20). These objects are
promising for comparisons with the results of one-dimensional hydrodynamical
simulations of expanding regions of ionized hydrogen.Comment: Astronomy Reports, Volume 61, Issue 12, pp.1015-1030 (ARep Homepage
Analysis of the interstellar matter at the periphery of the supershell surrounding the CYG OB1 association in 2.12 micron molecular hydrogen line
We present observations of the vdB 130 cluster vicinity in a narrow-band
filter centered at a m molecular hydrogen line performed at the
Caucasus Mountain Observatory of the Lomonosov Moscow State University. The
observations reveal an H emission shell around vdB 130, coincident with a
bright infrared shell, visible in all \textit{Spitzer} bands. Also, numerous
H emission features are detected around infrared Blobs E and W and in the
vicinity of a protocluster located to the east of the shell, in a tail of a
cometary molecular cloud. H emission in the vicinity of the vdB~130 cluster
is mostly generated in well-developed \HII\ regions and is of fluorescent
nature. In the protocluster area, isolated spots are observed, where H
emission is collisionally excited and is probably related to shocks in
protostellar outflows. Obtained results are discussed in the context of
possible sequential star formation in the vicinity of the vdB 130 cluster,
triggered by the interaction of the expanding supershell surrounding the Cyg
OB1 association with the molecular cloud and an associated molecular filament.Comment: Accepted by Astrophysical Bulleti
Dust Opacities in Protoplanetary Disks for FEOSAD Code
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ ΡΠ΅ΡΠΊΠΈ Π½Π΅ΠΏΡΠΎΠ·ΡΠ°ΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΏΡΠ»ΠΈ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ Ρ ΡΡΠ΅ΡΠΎΠΌ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΏΡΠ»Π΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΏΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌ ΠΎΡ 0.005 ΠΌΠΊΠΌ Π΄ΠΎ 1 ΡΠΌ. Π’Π°ΠΊΠΆΠ΅ ΡΡΡΠ΅Π½ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΡΡΠ°Π² ΠΏΡΠ»Π΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ Π»Π΅Π΄ΡΠ½ΠΎΠΉ ΠΌΠ°Π½ΡΠΈΠΈ ΠΌΠ°ΡΡΠΎΠΉ ΠΎΡ 10 Π΄ΠΎ 90 % ΠΎΡ ΠΌΠ°ΡΡΡ ΠΏΡΠ»ΠΈΠ½ΠΊΠΈ. ΠΡΠΈ ΡΠ΅ΡΠΊΠΈ Π±ΡΠ΄ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π² Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π³Π°Π·ΠΎΠΏΡΠ»Π΅Π²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΎΠΏΠ»Π°Π½Π΅ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΠΊΠ° FEOSAD.Calculated grids of dust opacities for various temperatures are presented, with sizes of the dust component varying from 0.005 ΞΌm to 1 cm. The chemical composition of the dust component depending on temperature and the presence of an ice mantle weighing from 10 to 90 % of the mass of a dust grain are also taken into account. These grids will be used to calculate the thermal structure in the hydrodynamic model of the FEOSAD model of a protoplanetary disk with gas and dust components.Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ Π³ΡΠ°Π½ΡΠ° Π ΠΠ€ 22-72-10029
- β¦