100 research outputs found

    Circulating Biomarkers of Fibrosis Formation in Patients with Arrhythmogenic Cardiomyopathy

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is a progressive inheritable disease which is characterized by a gradual fibro-(fatty) replacement of the myocardium. Visualization of diffuse and patchy fibrosis patterns is challenging using clinically applied cardiac imaging modalities (e.g., late gadolinium enhancement, LGE). During collagen synthesis and breakdown, carboxy-peptides are released into the bloodstream, specifically procollagen type-I carboxy-terminal propeptides (PICP) and collagen type-I carboxy-terminal telopeptides (ICTP). We collected the serum and EDTA blood samples and clinical data of 45 ACM patients (age 50.11 ± 15.53 years, 44% female), divided into 35 diagnosed ACM patients with a 2010 ARVC Task Force Criteria score (TFC) ≥ 4, and 10 preclinical variant carriers with a TFC < 4. PICP levels were measured using an enzyme-linked immune sorbent assay and ICTP levels with a radio immunoassay. Increased PICP/ICTP ratios suggest a higher collagen deposition. We found significantly higher PICP and PICP/ICTP levels in diagnosed patients compared to preclinical variant carriers (p < 0.036 and p < 0.027). A moderate negative correlation existed between right ventricular ejection fractions (RVEF) and the PICP/ICTP ratio (r = -0.46, p = 0.06). In addition, significant correlations with left ventricular function (LVEF r = -0.53, p = 0.03 and end-systolic volume r = 0.63, p = 0.02) were found. These findings indicate impaired contractile performance due to pro-fibrotic remodeling. Follow-up studies including a larger number of patients should be performed to substantiate our findings and the validity of those levels as potential promising biomarkers in ACM

    Exploring the Correlation Between Fibrosis Biomarkers and Clinical Disease Severity in PLN p.Arg14del Patients

    Get PDF
    Background: Pathogenic variants in phospholamban (PLN, like p. Arg14del), are found in patients diagnosed with arrhythmogenic (ACM) and dilated cardiomyopathy (DCM). Fibrosis formation in the heart is one of the hallmarks in PLN p.Arg14del carriers. During collagen synthesis and breakdown, propeptides are released into the circulation, such as procollagen type I carboxy-terminal propeptide (PICP) and C-terminal telopeptide collagen type I (ICTP). Aim: To investigate if PICP/ICTP levels in blood are correlative biomarkers for clinical disease severity and outcome in PLN p.Arg14del variant carriers. Methods: Serum and EDTA blood samples were collected from 72 PLN p.Arg14del carriers (age 50.5 years, 63% female) diagnosed with ACM (n = 12), DCM (n = 14), and preclinical variant carriers (n = 46). PICP levels were measured with an enzyme-linked immune sorbent assay and ICTP with a radio immuno-assay. Increased PICP/ICTP ratios suggest a higher collagen deposition. Clinical data including electrocardiographic, and imaging results were adjudicated from medical records. Results: No correlation between PICP/ICTP ratios and late gadolinium enhancement (LGE) was found. Moderate correlations were found between the PICP/ICTP ratio and end-diastolic/systolic volume (both r(s) = 0.40, n = 23, p = 0.06). PICP/ICTP ratio was significantly higher in patients with T wave inversion (TWI), especially in leads V4–V6, II, III, and aVF (p < 0.022) and in patients with premature ventricular contractions (PVCs) during an exercise tolerance test (p = 0.007). Conclusion: High PICP/ICTP ratios correlated with clinical parameters, such as TWI and PVCs. Given the limited size and heterogeneity of the patient group, additional studies are required to substantiate the incremental prognostic value of these fibrosis biomarkers in PLN p.Arg14del patients

    Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies

    Get PDF
    Inherited forms of arrhythmogenic and dilated cardiomyopathy (ACM and DCM) are characterized by variable disease expression and age-related penetrance. Calcium (Ca2+^{2+}) is crucially important for proper cardiac function, and dysregulation of Ca2+^{2+} homeostasis seems to underly cardiomyopathy etiology. A polymorphism, c.286T>G p.(Ser96Ala), in the gene encoding the histidine-rich Ca2+^{2+} binding (HRC) protein, relevant for sarcoplasmic reticulum Ca2+^{2+} cycling, has previously been associated with a marked increased risk of life-threatening arrhythmias among idiopathic DCM patients. Following this finding, we investigated whether p.(Ser96Ala) affects major cardiac disease manifestations in carriers of the phospholamban (PLN) c.40_42delAGA; p.(Arg14del) pathogenic variant (cohort 1); patients diagnosed with, or predisposed to, ACM (cohort 2); and DCM patients (cohort 3). We found that the allele frequency of the p.(Ser96Ala) polymorphism was similar across the general European-American population (control cohort, 40.3-42.2%) and the different cardiomyopathy cohorts (cohorts 1-3, 40.9-43.9%). Furthermore, the p.(Ser96Ala) polymorphism was not associated with life-threatening arrhythmias or heart failure-related events across various patient cohorts. We therefore conclude that there is a lack of evidence supporting the important role of the HRC p.(Ser96Ala) polymorphism as a modifier in cardiomyopathy, refuting previous findings. Further research is required to identify bona fide genomic predictors for the stratification of cardiomyopathy patients and their risk for life-threatening outcomes

    A 50% Reduction of Excitability but Not of Intercellular Coupling Affects Conduction Velocity Restitution and Activation Delay in the Mouse Heart

    Get PDF
    Computer simulations suggest that intercellular coupling is more robust than membrane excitability with regard to changes in and safety of conduction. Clinical studies indicate that SCN5A (excitability) and/or Connexin43 (Cx43, intercellular coupling) expression in heart disease is reduced by approximately 50%. In this retrospective study we assessed the effect of reduced membrane excitability or intercellular coupling on conduction in mouse models of reduced excitability or intercellular coupling. Epicardial activation mapping of LV and RV was performed on Langendorff-perfused mouse hearts having the following: 1) Reduced excitability: Scn5a haploinsufficient mice; and 2) reduced intercellular coupling: Cx43(CreER(T)/fl) mice, uninduced (50% Cx43) or induced (10% Cx43) with Tamoxifen. Wild type (WT) littermates were used as control. Conduction velocity (CV) restitution and activation delay were determined longitudinal and transversal to fiber direction during S(1)S(1) pacing and S(1)S(2) premature stimulation until the effective refractory period. In both animal models, CV restitution and activation delay in LV were not changed compared to WT. In contrast, CV restitution decreased and activation delay increased in RV during conduction longitudinal but not transverse to fiber direction in Scn5a heterozygous animals compared to WT. In contrast, a 50% reduction of intercellular coupling did not affect either CV restitution or activation delay. A decrease of 90% Cx43, however, resulted in decreased CV restitution and increased activation delay in RV, but not LV. Reducing excitability but not intercellular coupling by 50% affects CV restitution and activation delay in RV, indicating a higher safety factor for intercellular coupling than excitability in R

    Exercise capacity in children with isolated congenital complete atrioventricular block: does pacing make a difference?

    Get PDF
    Item does not contain fulltextThe management of patients with isolated congenital complete atrioventricular block (CCAVB) has changed during the last decades. The current policy is to pace the majority of patients based on a variety of criteria, among which is limited exercise capacity. Data regarding exercise capacity in this population stems from previous publications reporting small case series of unpaced patients. Therefore, we have investigated the exercise capacity of a group of contemporary children with CCAVB. Sixteen children (mean age 11.5 +/- 4; seven boys, nine girls) with CCAVB were tested. In 13 patients, a median number of three pacemakers were implanted, whereas in three patients no pacemaker was given. All patients had an echocardiogram and completed a cardiopulmonary cycle exercise test. Exercise parameters were determined and compared with reference values obtained from healthy Dutch peers. The peak oxygen uptake/body mass was reduced to 34.4 +/- 9.5 ml kg(-1) min(-1) (79 +/- 24% of predicted) and the ventilatory threshold was reduced to 52 +/- 17% of peak oxygen uptake (78 +/- 21% of predicted), whereas the peak work load/body mass was 2.8 +/- 0.6 W/kg (91 +/- 24% of predicted), which was similar to controls. Importantly, 25% of the paced patients showed upper rate restriction by the pacemaker. In conclusion, children with CCAVB show a reduced peak oxygen uptake and ventilatory threshold, whereas they show normal peak work rates. This indicates that they generate more energy during exercise from anaerobic energy sources. Paced children with CCAVB do not perform better than unpaced children.1 april 201

    Leukocytic Toll-Like Receptor 2 Deficiency Preserves Cardiac Function And Reduces Fibrosis In Sustained Pressure Overload

    Get PDF
    An involement of Toll-like receptor 2 (TLR2) has been established in cardiac dysfunction after acute myocardial infarction; however, its role in chronic pressure overload is unclear. We sought to evaluate the role of TLR2 in cardiac hypertrophy, fibrosis and dysfunction in sustained pressure overload. We induced pressure overload via transverse aortic constriction (TAC) in TLR2-/- and wild type (WT) mice, and followed temporal changes over 8 weeks. Despite similar increases in heart weight, left ventricular (LV) ejection fraction (EF) and diastolic function (mitral E/A ratio) were preserved in TLR2-/- mice but impaired in WT mice following TAC. TAC produced less LV fibrosis in TLR2-/- mice associated with lower mRNA levels of collagen genes (Col1a1 and Col3a1) and lower protein level of TGFbeta1, compared to WT mice. Following TAC, the influx of macrophages and CD3 T cells into LV was similar between TLR2-/- and WT mice, whereas levels of cyto/chemokines were lower in the heart and plasma in TLR2-/- mice. TLR2-/- bone marrow-derived cells protected against LVEF decline and fibrosis following TAC. Our findings show that leukocytic TLR2 deficiency protects against LV dysfunction and fibrosis probably via a reduction in inflammatory signaling in sustained pressure overload

    A fishing trip to cure arrhythmogenic cardiomyopathy?

    No full text
    The paper entitled "Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy", as published in 2014 in Science Translational Medicine, examined the effects of the newly discovered drug SB216763 (SB21) on arrhythmogenic cardiomyopathy (ACM). In this paper, the authors focused on mechanisms underlying ACM and the accompanying molecular and cellular alterations. Most importantly they showed that SB21 was able to rescue and partly reverse the ACM phenotype in three different experimental models: (I) a zebrafish model of Naxos disease induced by the overexpression of the 2057del2 mutation in plakoglobin (PKG); (II) neonatal rat cardiomyocytes overexpressing the same mutation in PKG; (III) cardiomyocytes derived from induced pluripotent stem cells expressing two different forms of mutations in plakophilin-2. This editorial will focus on the potency and possible restrictions concerning SB21 treatment as a potential intervention for ACM and the usefulness of the applied zebrafish models in general

    Anchored protein kinase A signalling in cardiac cellular electrophysiology

    No full text
    The cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is an elementary molecule involved in both acute and chronic modulation of cardiac function. Substantial research in recent years has highlighted the importance of A-kinase anchoring proteins (AKAP) therein as they act as the backbones of major macromolecular signalling complexes of the β-adrenergic/cAMP/PKA pathway. This review discusses the role of AKAP-associated protein complexes in acute and chronic cardiac modulation by dissecting their role in altering the activity of different ion channels, which underlie cardiac action potential (AP) generation. In addition, we review the involvement of different AKAP complexes in mechanisms of cardiac remodelling and arrhythmias

    Anchored protein kinase A signalling in cardiac cellular electrophysiology

    No full text
    The cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is an elementary molecule involved in both acute and chronic modulation of cardiac function. Substantial research in recent years has highlighted the importance of A-kinase anchoring proteins (AKAP) therein as they act as the backbones of major macromolecular signalling complexes of the β-adrenergic/cAMP/PKA pathway. This review discusses the role of AKAP-associated protein complexes in acute and chronic cardiac modulation by dissecting their role in altering the activity of different ion channels, which underlie cardiac action potential (AP) generation. In addition, we review the involvement of different AKAP complexes in mechanisms of cardiac remodelling and arrhythmias
    corecore