5 research outputs found

    Case study of non-linear PV inverter devices attached to the LV distribution network

    Get PDF
    Every year, more and more solar power plants are connected to the grid, producing electricity in an environmentally sustainable manner. The increasing number of photovoltaic (PV) installations and their integration into the low voltage (LV) distribution network (DN) is having an impact in terms of power quality (PQ). For example, the voltage in the DN can sustain high distortion values. The impact of a PV installation on the LV network is analysed in this research. The field measurements were carried out over a 3-week period at a solar power plant with a total output power of 160 kW in an Estonian rural municipality. The measurement results provide the opportunity to look more closely at the effect of the solar power plant on the supply voltage of the LV DN. Parameters such as voltage variation within a one-minute period, the asymmetry of the voltages and the total harmonic distortion of the voltages are discussed here

    Analysis of Traditional and Alternative Methods for Solving Voltage Problems in Low Voltage Grids: An Estonian Case Study

    No full text
    Smart Cities can benefit from existing municipal low voltage (LV) distribution grids by supporting public services with permanent power supply and providing grid connection points to distributed generators (DG). The increased integration of DGs and inverter based non-linear loads increases voltage quality issues, thus the cost-efficient assurance of voltage quality in LV grids with long radial lines is of increasing importance for the operators of municipal electricity distribution systems. Conventional methods for mitigating voltage quality issues (e.g., power line renovation) might not be optimal solutions either technologically or economically. Existing studies do not address all relevant issues related to the assurance of required voltage quality in such LV grids. This paper provides an overview of the applicability and rationality of traditional as well as alternative methods to solve voltage problems in LV grids. The authors use DIgSILENT PowerFactory software to simulate the performance of voltage stabilisers under different conditions. The authors propose a robust method for the classification of LV feeders and provide recommendations on how to resolve voltage quality problems, with the help of different power quality improvement devices, where the traditional methods of upgrading to medium voltage and grid reinforcement are economically infeasible. Based on our results, recommendations for mitigating voltage quality problems in LV distribution grids with radial lines of different lengths are given

    Analysis of Traditional and Alternative Methods for Solving Voltage Problems in Low Voltage Grids: An Estonian Case Study

    No full text
    Smart Cities can benefit from existing municipal low voltage (LV) distribution grids by supporting public services with permanent power supply and providing grid connection points to distributed generators (DG). The increased integration of DGs and inverter based non-linear loads increases voltage quality issues, thus the cost-efficient assurance of voltage quality in LV grids with long radial lines is of increasing importance for the operators of municipal electricity distribution systems. Conventional methods for mitigating voltage quality issues (e.g., power line renovation) might not be optimal solutions either technologically or economically. Existing studies do not address all relevant issues related to the assurance of required voltage quality in such LV grids. This paper provides an overview of the applicability and rationality of traditional as well as alternative methods to solve voltage problems in LV grids. The authors use DIgSILENT PowerFactory software to simulate the performance of voltage stabilisers under different conditions. The authors propose a robust method for the classification of LV feeders and provide recommendations on how to resolve voltage quality problems, with the help of different power quality improvement devices, where the traditional methods of upgrading to medium voltage and grid reinforcement are economically infeasible. Based on our results, recommendations for mitigating voltage quality problems in LV distribution grids with radial lines of different lengths are given
    corecore