60 research outputs found

    Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’

    Get PDF
    This study attempts to identify a new source of bacterial blight (BB) resistance gene and microsatellite makers (SSR) linked to it. A total number of 139 F2 progenies generated from a cross between the resistant donor ‘Ba7’and ‘Pin Kaset’ were developed and used for this study. A Thai Xoo isolate, TXO16, collected from Phitsanulok province, was used to evaluate the resistance reaction in the F2 population. The segregation ratio of resistance (R) and susceptibility (S) was statistically fitted to 1R:3S model indicating single recessive gene segregation. Twenty F2 individuals consisting of 10 resistant and 10 susceptible plants were chosen for DNA analysis. Sixty-two polymorphic markers covering all rice chromosomes were used to identify the location and linked markers of the resistance gene. Four SSR markers, viz. RM30, RM7243, RM5509 and RM400, located on the long arm of rice chromosome 6, could clearly discriminate between resistant and susceptible phenotypes, and 161 BC2F2:3 individuals carrying BB resistance gene were developed through MAS using these SSR markers. This population was inoculated with TXO16 to validate and confirm the location of the gene and linked markers. The segregation ratio was statistically fitted to 1R:3S model confirming a recessive nature of the gene action in this germplasm. Phenotypic-genotypic association including five additional markers suggested that RM20590 was tightly linked to this resistance gene (R2=59.12 %). The BB phenotype was controlled by a recessive gene with incomplete dominance of susceptible allele providing intermediate resistance to Xoo pathogen in heterozygotes. The location of the gene was in the vicinity of a dominant gene, Xa7, which was previously reported. However, the resistance gene identified here was different from Xa7 because of the different nature of gene action. Consequently, this gene was tentatively designated as xa33(t). The resistance gene from rice cultivar ‘Ba7’ and the closely linked markers found in this study will be useful for rice breeders as a source to improve BB resistance through MAS in rice breeding programs

    Detection of Avirulence Gene AvrPi9 in Magnaporthe oryzae, a Rice Blast Fungus, Using a Combination of RPA and CRISPR-Cas12a Techniques

    Get PDF
    Rice blast disease is one of the most devastating diseases of rice production worldwide, which causes by an ascomycete fungus, Magnaporthe oryzae. The virulence of the rice blast fungus is determined by avirulence genes (Avr genes). Therefore, the identification of Avr genes is important for rice resistance variety improvement. Avr genes are currently identified using the pathogenicity assay with rice near-isogenic lines (NILs) or PCR amplification and gene sequencing, both of which are time-consuming and labor-intensive methods. This study aims to develop a simple method for Avr gene identification using AvrPi9 as a model. A recombinase polymerase amplification (RPA) technique was carried out to amplify AvrPi9 by incubating rice blast fungus genomic DNA with gene-specific primers at 37°C for 20 min. Cas12a-based AvrPi9 detection was performed by incubating at 37°C for 5 min. The fluorescence signal was visualized by the naked eye under an LED transilluminator. The study found that AvrPi9 can be amplified and detected using RPA and a Cas12a-based method. AvrPi9_crRNA2 has a higher efficiency than AvrPi9_crRNA1. The sensitivity of the method was 3.8 ng of DNA target for AvrPi9_crRNA1 and 1.9 ng of DNA target for AvrPi9_crRNA2. This RPA and Cas12a combination technique is a newer method for Avr gene detection in plants and has several advantages over traditional methods. It is considered easier to use and more efficient in terms of time and labor, making it a potentially useful tool for plant breeders and pathologists

    High Performance of Photosynthesis and Osmotic Adjustment Are Associated With Salt Tolerance Ability in Rice Carrying Drought Tolerance QTL: Physiological and Co-expression Network Analysis

    No full text
    Understanding specific biological processes involving in salt tolerance mechanisms is important for improving traits conferring tolerance to salinity, one of the most important abiotic stresses in plants. Under drought and salinity stresses, plants share overlapping responsive mechanisms such as physiological changes and activation of signaling molecules, which induce and transmit signals through regulator genes in a regulatory network. In this study, two near isogenic lines of rice carrying chromosome segments of drought tolerance QTL on chromosome 8 from IR68586-F2-CA-31 (DH103) in the genetic background of sensitive cultivar “Khao Dawk Mali 105; KDML105” (designated as CSSL8-94 and CSSL8-95) were used to investigate physiological responses to salt stress [namely growth, Na+/K+ ratio, water status, osmotic adjustment, photosynthetic parameters, electrolyte leakage (EL), malondialdehyde (MDA), proline and sugar accumulations], compared with the standard salt tolerant (Pokkali; PK) and their recurrent parent (KDML105) rice cultivars. Physiological examination indicated that both CSSLs showed superior salt-tolerant level to KDML105. Our results suggested that salt tolerance ability of these CSSL lines may be resulted from high performance photosynthesis, better osmotic adjustment, and less oxidative stress damage under salt conditions. Moreover, to explore new candidate genes that might take part in salt tolerance mechanisms, we performed co-expression network analysis for genes identified in the CSSL rice, and found that Os08g419090, the gene involved with tetrapyrrole and porphyrin biosynthetic process (chlorophyll biosynthetic process), Os08g43230 and Os08g43440 (encoded TraB family protein and cytochrome P450, respectively) might have unprecedented roles in salt stress tolerance

    Hybridization Technique for Bambara Groundnut

    No full text

    Quantitative Trait Loci Associated with Drought Tolerance at Reproductive Stage in Rice

    No full text
    Drought is a major constraint to rice (Oryza sativa) yield and its stability in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and development of more drought tolerant cultivars. Quantitative trait loci (QTL) for grain yield and its components and other agronomic traits were identified using a subset of 154 doubled haploid lines derived from a cross between two rice cultivars, CT9993-510 to 1-M and IR62266-42 to 6-2. Drought stress treatments were managed by use of a line source sprinkler irrigation system, which provided a linearly decreasing level of irrigation coinciding with the sensitive reproductive growth stages. The research was conducted at the Ubon Rice Research Center, Ubon, Thailand. A total of 77 QTL were identified for grain yield and its components under varying levels of water stress. Out of the total of 77 QTL, the number of QTL per trait were: 7-grain yield (GY); 8-biological yield (BY); 6-harvest index (HI); 5-d to flowering after initiation of irrigation gradient (DFAIG); 10-total spikelet number (TSN); 7-percent spikelet sterility (PSS); 23-panicle number (PN); and 11-plant height (PH). The phenotypic variation explained by individual QTL ranged from 7.5% to 55.7%. Under well-watered conditions, we observed a high genetic association for BY, HI, DFAIG, PSS, TSN, PH, and GY. However, only BY and HI were found to be significantly associated with GY under drought treatments. QTL flanked by markers RG104 to RM231, EMP2_2 to RM127, and G2132 to RZ598 on chromosomes 3, 4, and 8 were associated with GY, HI, DFAIG, BY, PSS, and PN under drought treatments. The aggregate effects of these QTL on chromosomes 3, 4, and 8 resulted in higher grain yield. These QTL will be useful for rainfed rice improvement, and will also contribute to our understanding of the genetic control of GY under drought conditions at the sensitive reproductive stage. Close linkage or pleiotropy may be responsible for the coincidence of QTL detected in this experiment. Digenic interactions between QTL main effects for GY, BY, HI, and PSS were observed under irrigation treatments. Most (but not all) DH lines have the same response in measure of productivity when the intensity of water deficit was increased, but no QTL by irrigation treatment interaction was detected. The identification of genomic regions associated with GY and its components under drought stress will be useful for marker-based approaches to improve GY and its stability for farmers in drought-prone rice environments

    Chlorophyll Retention and High Photosynthetic Performance Contribute to Salinity Tolerance in Rice Carrying Drought Tolerance Quantitative Trait Loci (QTLs)

    No full text
    Jasmine rice (Oryza sativa L.), or Khao Dawk Mali 105 (KDML105), is sensitive to drought and salt stresses. In this study, two improved drought-tolerant chromosome segment substitution lines (CSSLs) of KDML105 (CSSL8-103 and CSSL8-106), which carry drought tolerance quantitative trait loci (QTLs) on chromosome 8, were evaluated for salt tolerance and were compared with KDML105 and the QTL donor DH103, their parents and the salt-tolerant genotype Pokkali. After being subjected to salt stress for 6 days, 3-week-old seedlings of Pokkali showed the highest salt tolerance. Parameters related to photosynthesis were less inhibited in both CSSLs and the donor DH103, while these parameters were more severely damaged in the recurrent parent KDML105. Albeit a high ratio of Na+/K+, CSSLs and DH103 showed similar or higher contents of soluble sugar and activity of superoxide dismutase (SOD; EC1.15.1.1) compared with Pokkali, indicating possible mechanisms of either tissue or osmotic tolerance in these plants. The expression of a putative gene Os08g41990 (aminotransferase), which is located in DT-QTL and is involved in chlorophyll biosynthesis, significantly decreased under salt stress in KDML105 and CSSL8-103, while no obvious change in the expression of this gene was observed in Pokkali, DH103 and CSSL8-106. This gene might play a role in maintaining chlorophyll content under stress conditions. Taken together, the results of this study indicate that DT-QTL could contribute to the enhancement of photosynthetic performance in CSSL lines, leading to changes in their physiological ability to tolerate salinity stress
    corecore