346 research outputs found

    Cross-Strait Relations and Regional Integration: A Review of the Ma Ying-jeou Era (2008-2016)

    Get PDF
    Despite the signing of the Economic Cooperation Framework Agreement (ECFA) between mainland China and Taiwan in 2010, Taiwan’s future status in the field of Asian regional integration remains unclear. While Taiwan remains outside the Trans-Pacific Partnership (TPP) and the Regional Comprehensive Economic Partnership (RCEP), China’s rise and continued expansion in regional integration put increasing pressure on Taiwan to confront its political differences with China. This paper discusses the interconnection between regional integration and cross-Strait relations and seeks to address the implications such linkage entails. The authors note the exploitation of a two-pronged strategy by Beijing to pressure Taibei into confronting the political problem between China and Taiwan. In addition, the authors assess Taiwan’s performance in terms of its progress in the establishment of preferential trade agreements (PTAs) from 2008 to 2016 under the Ma Ying-jeou (Ma Yingjiu) administration and identify the hurdles and prospects for Taiwan’s future integration efforts. This paper concludes with a brief consideration of Taiwan’s New Southward Policy

    The Small Heat Shock Protein Hsp31 Cooperates with Hsp104 to Modulate Sup35 Prion Aggregation

    Get PDF
    The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit a-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSIC] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSIC] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSIC] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSIC] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSIC] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSIC] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSIC] status by the chaperone action of Hsp31. The delineation of Hsp31’s role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer

    Modeling the Cell Cycle: Why Do Certain Circuits Oscillate?

    Get PDF
    Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur, just as the theory of gravitation allows one to understand why cannonballs fly in parabolic arcs. The simplest examples of the eukaryotic cell cycle operate like autonomous oscillators. Here, we present the basic theory of oscillatory biochemical circuits in the context of the Xenopus embryonic cell cycle. We examine Boolean models, delay differential equation models, and especially ordinary differential equation (ODE) models. For ODE models, we explore what it takes to get oscillations out of two simple types of circuits (negative feedback loops and coupled positive and negative feedback loops). Finally, we review the procedures of linear stability analysis, which allow one to determine whether a given ODE model and a particular set of kinetic parameters will produce oscillations

    Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition

    Get PDF
    Facial analysis and recognition have received substential attention from researchers in biometrics, pattern recognition, and computer vision communities. They have a large number of applications, such as security, communication, and entertainment. Although a great deal of efforts has been devoted to automated face recognition systems, it still remains a challenging uncertainty problem. This is because human facial appearance has potentially of very large intra-subject variations of head pose, illumination, facial expression, occlusion due to other objects or accessories, facial hair and aging. These misleading variations may cause classifiers to degrade generalization performance

    Overweight and Obesity-related Metabolic Disorders in Hospital Employees

    Get PDF
    BackgroundObesity is associated with metabolic disorders and cardiovascular diseases. This study investigated the relationship between overweight and obese status and the incidence of type 2 diabetes, hypertension, hyperlipidemia and hyperuricemia.MethodsThis prospective cohort study comprised 1749 hospital employees who received baseline health check-ups in 1993. Data from the 1027 participants (832 women, 195 men; mean age, 36 ± 7 years) who repeated check-ups in 2003 were used in the analysis. Relative risks (RRs) for development of metabolic disorders during follow-up associated with different body mass index (BMI) categories at baseline as defined by Asia-Pacific recommendations and the Department of Health in Taiwan were calculated after adjustment for covariates.ResultsThe prevalence of overweight and obesity at baseline check-up were 17.6% and 14.5%, respectively. Obese subjects with baseline BMI ≥ 25 kg/m2 had a significant multivariate-adjusted RR of 2.7 for hypertension, 14.8 for type 2 diabetes, 3.2 for hypertriglyceridemia, and 2.8 for hyperuricemia, compared to subjects with baseline BMI < 23.0 kg/m2. RR for diabetes was higher in women than in men, but RR for hypertriglyceridemia was higher in men. The risks of hypertension and hyperuricemia significantly increased for subjects with baseline BMI ≥ 23 kg/m2, while RRs for type 2 diabetes increased significantly for baseline BMI ≥ 24 kg/m2 and hypertriglyceridemia increased for baseline BMI ≥ 25 kg/m2. The risks attributable to obesity (baseline BMI ≥ 25 kg/m2) were 23.0% for hypertension, 70.8% for diabetes, 27.9% for hypertriglyceridemia, and 24.1% for hyperuricemia.ConclusionThis study revealed that a high prevalence of overweight and obesity was associated with significantly increased risk of development of type 2 diabetes, hypertension, hypertriglyceridemia and hyperuricemia in hospital employees, suggesting the need for programs to improve weight management

    Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator

    Get PDF
    In Escherichia coli, protein degradation in synthetic circuits is commonly achieved by the ssrA-tagged degradation system. In this work, we show that the degradation kinetics for the green fluorescent protein fused with the native ssrA tag in each cell exhibits the zeroth-order limit of the Michaelis–Menten kinetics, rather than the commonly assumed first-order. When measured in a population, the wide distribution of protein levels in the cells distorts the true kinetics and results in a first-order protein degradation kinetics as a population average. Using the synthetic gene-metabolic oscillator constructed previously, we demonstrated theoretically that the zeroth-order kinetics significantly enlarges the parameter space for oscillation and thus enhances the robustness of the design under parametric uncertainty

    New Plasma Separation Glucose Oxidase-based Glucometer in Monitoring of Blood With Different PO2 Levels

    Get PDF
    BackgroundThe PalmLab glucometer is a newly designed plasma separation glucose oxidase (GO)-based glucometer. Past studies have shown that the accuracy of GO-based glucometers is compromised when measurements are taken in patients with high PO2 levels. We performed a two-arm study comparing the fitness of the PalmLab blood glucometer with that of a standard glucose analyzer in monitoring blood glucose levels in pediatric patients, especially when arterial partial pressure of oxygen (PO2) was high.MethodsIn the first arm of the study, arterial blood samples from pediatric patients were measured by the PalmLab blood glucometer and the YSI 2302 Plus Glucose/Lactate analyzer. In the second arm of the study, venous blood samples from adult volunteers were spiked with glucose water to prepare three different levels of glucose (65, 150, and 300mg/dL) and then oxygenated to six levels of PO2 (range, 40–400mmHg). The biases of the PalmLab glucometer were calculated.ResultsA total of 162 samples were collected in the first arm of the study. Results of linear regression showed that the coefficient of determination (R2) between PalmLab glucometer and standard glucose analyzer was 0.9864. Error grid analysis revealed that all the results were within Zone A (clinically accurate estimate zone). The biases between the two systems were low at different PO2 levels. In the second arm of the study, the results were also unaffected by changes in PO2.ConclusionThe PalmLab glucometer provides accurate results in samples with high PO2 and is suitable for measuring arterial glucose levels in pediatric patients

    On the interaction of electromagnetic waves with conductors

    Full text link
    We study the interaction of electromagnetic waves with electrons. Our results can be applied to radio waves in the ionosphere or to lasers impinging on metals causing melting. We generalize the classical analysis of Zener to the case which includes the interactions of the electrons with lattice vibrations or the positive ions. We use the induced polarization to give a globally coherent and unifying analysis of the two cases, where collisions are important and where they are negligible.Comment: 5 pages, no figure

    Haematological Traits Co-Vary With Migratory Status, Altitude and Energy Expenditure: A Phylogenetic, Comparative

    Get PDF
    Aerobic capacity is assumed to be a main predictor of workload ability and haematocrit (Hct) and haemoglobin (Hb) have been suggested as key determinants of aerobic performance. Intraspecific studies have reported increases in Hct and Hb in response to increased workload. Furthermore, Hct and Hb vary markedly among individuals and throughout the annual cycle in free-living birds and it has been suggested that this variation reflects adaptive modulation of these traits to meet seasonal changes in energy demands. We used a comparative dataset of haematological traits, measures of metabolic rate (57 species), and life-history traits (160 species) to test several hypotheses for adaptive variation in haematology in relation to migration and altitude. We then extended these general ideas to test relationships between Hct and basal metabolic rate, daily energy expenditure and activity energy expenditure, using the 57 species that we have metabolic rate information for. We found that at the interspecific level, full migrants have higher Hct and Hb than partial migrants and non-migrants, and that altitude is positively correlated with Hb but not Hct. Hct is positively associated with activity energy expenditure (energy spent specifically on costly activities), suggesting that haematological traits could be adaptively modulated based on life-history traits and that Hct is a potential physiological mediator of energetic constraint
    • …
    corecore