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Computational modeling and the theory of nonlinear dynamical systems allow one to not simply
describe the events of the cell cycle, but also to understand why these events occur, just as the
theory of gravitation allows one to understand why cannonballs fly in parabolic arcs. The simplest
examples of the eukaryotic cell cycle operate like autonomous oscillators. Here, we present the
basic theory of oscillatory biochemical circuits in the context of the Xenopus embryonic cell cycle.
We examine Boolean models, delay differential equation models, and especially ordinary differen-
tial equation (ODE) models. For ODE models, we explore what it takes to get oscillations out of two
simple types of circuits (negative feedback loops and coupled positive and negative feedback
loops). Finally, we review the procedures of linear stability analysis, which allow one to determine
whether a given ODE model and a particular set of kinetic parameters will produce oscillations.
In many eukaryotic cells, the cell cycle proceeds as a sequence

of contingent events. A new cell must first grow to a sufficient

size before it can begin DNA replication. Then, the cell must

complete DNA replication before it can begin mitosis. Finally,

the cell must successfully organize a metaphase spindle before

it can complete mitosis and begin the cycle again. If cell growth,

DNA replication, or spindle assembly is slowed down, the entire

cell cycle slows. Thus, this type of cell cycle is like an ‘‘assembly

line’’ or ‘‘succession of dominoes’’ (Hartwell and Weinert, 1989;

Murray and Kirschner, 1989b).

However, some cell cycles are qualitatively different in terms

of their dynamics. Most notable of these exceptions is the early

embryonic cell cycle in the amphibian Xenopus laevis.DNA repli-

cation is not contingent upon cell growth, probably because the

frog egg is so big to start with. Mitotic entry is not contingent

upon completion of DNA replication, and mitotic exit is not

contingent upon the successful assembly of a metaphase

spindle because the relevant checkpoints are ineffective in the

context of the embryo’s high cytoplasm:nucleus ratio (Dasso

and Newport, 1990; Minshull et al., 1994). Lacking these contin-

gencies, the early embryo simply pulses once every 25 min,

irrespective of whether the endpoints of the cell cycle (DNA

replication and mitosis) have been completed (Hara et al.,

1980). Thus, this cell cycle is clock-like (Murray and Kirschner,

1989b); it behaves as if it is being driven by an autonomous

biochemical oscillator.

Although many biological processes seem almost unfathom-

ably complex and incomprehensible, oscillators and clocks are

the types of processes that we might have a good chance of

not just describing, but also understanding. Accordingly, much

effort has gone into understanding how simple cell cycles work

in model systems like Xenopus embryos and the fungi S. pombe
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and S. cerevisiae. This requires the identification of the proteins

and genes needed for the embryonic cell cycle and the elucida-

tion of the regulatory processes that connect these proteins and

genes. Over the past three decades, enormous progress has

been made toward these ends. In each case, the cell cycle is

driven by a protein circuit centered on the cyclin-dependent

protein kinase CDK1 and the anaphase-promoting complex

(APC) (Figure 1A). The activation of CDK1 drives the cell into

mitosis, whereas the activation of APC, which generally lags

behind CDK1, drives the cell back out (Figure 1B). There are still

some missing components and poorly understood connections,

but overall, the cell-cycle network is fairly well mapped out.

But a satisfying understanding of why the CDK1/APC system

oscillates requires more than a description of components and

connections; it requires an understanding of why any regulatory

circuit would oscillate instead of simply settling down into

a stable steady state. What types of biochemical circuits can

oscillate, and what is required of the individual components of

the circuit to permit oscillations? Such insights are provided by

the theory of nonlinear dynamics and by computational

modeling.

Indeed, cell-cycle modeling has become a very popular

pursuit. Hundreds of models have been published (Table 1),

beginning with Kauffman, Wille, and Tyson’s prescient proposal

that the cell cycle of the yellow slime mold Physarum

polycephalum is driven by a relaxation oscillator (Kauffman and

Wille, 1975; Tyson and Kauffman, 1975). Many of the early

models, and a few of the more recent models, were simple, as

models in physics typically are. They consisted of a small

number of ordinary differential equations relating a few time-

dependent variables (e.g., protein concentrations or activities)

to each other and to a few time-independent kinetic parameters.
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Figure 1. Simplified Depiction of the Embryonic Cell Cycle, High-

lighting the Main Regulatory Loops
(A) Cyclin-CDK1 is the master regulator of mitosis. APC-Cdc20 is an E3
ubiquityl ligase, which marks mitotic cyclins for degradation by the protea-
some. Wee1 is a protein kinase that inactivates cyclin-CDK1. Cdc25 is
a phosphoprotein phosphatase that activates cyclin-CDK1. Not shown here is
Plk1, which cooperates with cyclin-CDK1 in the activation of APC-Cdc20.
(B) In the Xenopus embryo, the activation of CDK1 drives the cell into mitosis,
whereas the activation of APC, which generally lags behind CDK1, drives the
cell back out of mitosis.
The purpose of this type of modeling is to understand in simpler,

albeit more abstract, terms how and why the cell cycle works.

Through time, many of the models have becomemore compli-

cated and more like chemical engineering models, consisting of

dozens of variables and regulatory processes. The purpose of

this type ofmodeling is to account for and test our understanding

of specificdetails of the system that, becauseof thecomplexity of

the system, cannot always be understood through intuition. This

typeof detailedmodel has successfully accounted for thepheno-

types of dozens of budding yeast mutants (Chen et al., 2004).

Both types of modeling have their place in understanding cell-

cycle regulation, and both have their adherents. Modeling

approaches range from simple Boolean modeling to stochastic

modeling and partial differential equation modeling. However,

to date, the majority of effort has focused on ordinary differential

equation (ODE) modeling (Table 1), which gets at the basic

solution phase biochemistry of cell-cycle regulation.

Here, we address the question of what it takes to make

a simple protein circuit like the CDK1/APC system oscillate.

We will start with Boolean modeling, which provides intuition

into the logic of biochemical oscillators. We then move on to
ODE models, which translate this logic into chemical terms.

The basic methods for analyzing ODE models of oscillators are

well known in the field of nonlinear dynamics but are not so

well known among biologists. We believe that it is high time

that theywere; after all, we biologists are studyingwhat are prob-

ably the world’s most interesting nonlinear dynamical systems.

We will emphasize the basic concepts of oscillator function

and, to the extent possible, keep the algebra to a minimum.

For further information, the reader is directed to lucid reviews

by Goldbeter (Goldbeter, 2002) and Novák and Tyson (Novák

and Tyson, 2008; Tyson et al., 2003), as well as Strogatz’s

outstanding textbook (Strogatz, 1994).

Boolean Models
We begin by paring the cell cycle down to a simple two-compo-

nent model in which CDK1 activates APC and APC inactivates

CDK1 (Figure 2B). This is the essential negative feedback loop

upon which the cell-cycle oscillator is built (Murray et al.,

1989). Perhaps the simplest way to think about the dynamics

of a system like this is through Boolean or logical analysis (Glass

and Kauffman, 1973).

Suppose that both CDK1 and APC are perfectly switch-like in

their regulation; that is, they are either completely on or

completely off. Then, together, the system of CDK1 plus APC

has four possible discrete states (APCon/CDK1on, APCon/

CDK1off, APCoff/CDK1on, and APCoff/CDK1off) (Figure 2E). Now

suppose the system starts in an interphase-like state, with

APCoff/CDK1off. In the first increment of time, what will happen?

If the APC is off, then CDK1 turns on. Thus, we define a rule:

state 1, with APCoff/CDK1off, goes to state 2with APCoff/CDK1on.

Next, the active CDK1 activates APC; thus, state 2 goes to 3. The

active APC then inactivates CDK1, and state 3 goes to state 4.

Finally, in the absence of active CDK1, the APC becomes inac-

tive, and state 4 goes to state 1. This completes the cycle.

We can depict the dynamics of this oscillator as a diagram in

‘‘state space’’ (Figure 2E). The model goes through a never-

ending cycle, and all of the possible states of the system are

visited during each run through the cycle.

If we add one more component to the system—for example,

a protein like Polo-like kinase 1 (Plk1), which here we assume

is activated by CDK1 and, in turn, contributes to the activation

of APC (Figure 2C)—then there are eight (2 3 2 3 2) possible

states for the system. If we start with all of the proteins off and

assume six biologically reasonable rules (active CDK1 activates

Plk1, active Plk1 activates APC, active APC inactivates CDK1.),

once again we get a never-ending cycle of states (Figure 2F). But

this time, only some of the possible states (states 1–6 in

Figure 2F) lie on the cycle. The other two states (7 and 8) feed

into the cycle in a manner determined by the rules we assume.

Thus, no matter where the system starts, it will converge to the

cycle sooner or later. The behavior of this Boolean model is

analogous to ‘‘limit cycle oscillations,’’ which we will encounter

again in the next section.

With Boolean models, it is easy to obtain oscillations. Indeed,

one can even get oscillations from a model with a single species

(CDK1) that flips on when it is off and flips off when it is on

(Figures 2A and 2D), a discrete representation of a protein that

negatively regulates itself.
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Table 1. Some Mathematical Models of the Eukaryotic Cell Cycle

Year Organism/Cell Type Type of Model Reference

1970 No specific organism ODE (Sel’kov, 1970)

1974 No specific organism ODE (Gilbert, 1974)

1975 Physarum polycephalum ODE (Kauffman and Wille, 1975)

1975 Physarum polycephalum ODE (Tyson and Kauffman, 1975)

1991 Xenopus laevis embryos ODE (Goldbeter, 1991)

1991 Xenopus embryos ODE (Norel and Agur, 1991)

1991 Xenopus embryos, somatic cells ODE (Tyson, 1991)

1992 Xenopus embryos ODE (Obeyesekere et al., 1992)

1993 Xenopus embryos ODE (Novak and Tyson, 1993a)

1993 Xenopus embryos ODE (Novak and Tyson, 1993b)

1994 Xenopus embryos ODE, delay differential equations (Busenberg and Tang, 1994)

1996 Xenopus embryos ODE (Goldbeter and Guilmot, 1996)

1997 S. pombe ODE (Novak and Tyson, 1997)

1998 S. pombe ODE (Novak et al., 1998)

1998 Xenopus embryos ODE (Borisuk and Tyson, 1998)

1999 Mammalian somatic cells ODE (Aguda and Tang, 1999)

2003 Xenopus embryos ODE (Pomerening et al., 2003)

2003 S. cerevisiae ODE (Ciliberto et al., 2003)

2004 S. cerevisiae ODE (Chen et al., 2004)

2004 S. cerevisiae Boolean (Li et al., 2004)

2004 S. pombe Stochastic (Steuer, 2004)

2005 Xenopus embryos ODE (Pomerening et al., 2005)

2006 Mammalian somatic cells Delay differential equations (Srividhya and Gopinathan, 2006)

2006 S. cerevisiae Stochastic (Zhang et al., 2006)

2007 S. cerevisiae Stochastic (Braunewell and Bornholdt, 2007)

2007 S. cerevisiae Stochastic (Okabe and Sasai, 2007)

2007 S. cerevisiae Hybrid (Barberis et al., 2007)

2008 Xenopus embryos ODE (Tsai et al., 2008)

2008 S. cerevisiae Stochastic (Ge et al., 2008)

2008 S. cerevisiae Stochastic (Mura and Csikász-Nagy, 2008)

2008 S. pombe Boolean (Davidich and Bornholdt, 2008)

2008 Mammalian somatic cells ODE (Yao et al., 2008)

2009 Mammalian somatic cells ODE (Alfieri et al., 2009)

2010 S. cerevisiae ODE (Charvin et al., 2010)

2010 S. cerevisiae, S. pombe Boolean (Mangla et al., 2010)

2010 S. pombe ODE (Li et al., 2010)
ODE Models of the CDK1/APC System
Although Boolean analysis is simple and appealing, it is not

completely realistic. First, all three Booleanmodels with negative

feedback loops (Figures 2A–2C) yielded oscillations even though

we know that real negative feedback loops do not always oscil-

late. The problem is the simplifying assumptions that underpin

Boolean analysis: the discrete activity states and time steps.

Even if individual CDK1 and APCmolecules actually flip between

discrete on/off states, a cell contains a number of CDK1 and

APC molecules, and they would not be expected to all flip

simultaneously.

The framework for describing the dynamics of such a system

is chemical kinetic theory, and, assuming that the numbers of
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CDK1 and APC molecules are large, the activation and inactiva-

tion of CDK1 and APC can be described by a set of differential

equations. Here, we will build up an ODE model of the system,

starting with a one-ODE model, which fails to produce

oscillations. We then add additional complexity to the ODEs

until the model succeeds in producing sustained, limit cycle

oscillations.

A One-ODE Model
By definition, the rate of change of active CDK1 (denotedCDK1*)

is the rate of CDK1 activation minus the rate of CDK1 inactiva-

tion. For simplicity, we will assume that CDK1 is activated

by the rapid, high-affinity binding of cyclin, which is being



Figure 2. Boolean Models of CDK1 Regulation
(A–C) Schematic representation of negative feedback loops composed of one (A), two (B), or three (C) species.
(D–F) Trajectories in state space for Boolean models of these three negative feedback systems. Solid lines represent limit cycles; dashed lines (in F) connect the
states off the limit cycle to the limit cycle.
synthesized at a constant rate of a1 (Equation 1, blue). For CDK1

inactivation, we will assume mass action kinetics (Equation 1,

pink).

This gives us the first-order differential equation:

 [Equation 1]

There are two time-dependent variables, CDK1* and APC*. To

allow the system to be described by an ODE with a single

time-dependent variable (Figure 3A), we assume that the activity

of APC is regulated rapidly enough by CDK1* so that it can be

considered an instantaneous function ofCDK1*. What functional

form should we use for APC’s response function? Here, we will

assume that APC’s response to CDK1* is ultrasensitive—

sigmoidal in shape, like the response of a cooperative

enzyme—and that the response is described by a Hill function.

This assumption is reasonable because APCactivation is amulti-
step process; multistep processes often yield ultrasensitive,

sigmoidal responses; and, for our purposes, the Hill equation

with a Hill coefficient (n) greater than 1 can be thought of as

a generic sigmoidal function. Substituting a Hill function for

APC* in Equation 1, we get a one-ODEmodel of a negative feed-

back loop:

dCDK1�

dt
=a1 � b1CDK1

� CDK1�n1

Kn1
1 +CDK1�n1 [Equation 2]

We now choose, somewhat arbitrarily, values for the model’s

parameters (a1 = 0.1, b1 = 1,K1 = 0.5, n1 = 8) and initial conditions

(CDK1*[0] = 0). We can then numerically integrate Equation 2

over time and see how the concentration of activated CDK1*

evolves.

As shown in Figure 3C, the system moves monotonically from

its initial state toward a steady state; there is no hint of oscillation.

This monotonic approach to steady state is observed no matter

what we assume for the parameters and initial conditions. Thus,
Figure 3. A Model of CDK1 Regulation with

One Differential Equation
(A) Schematic of the model. The parameters
chosen for the model were a1 = 0.1, b1 = 1, K1 =
0.5, and n1 = 8.
(B) Trajectories in one-dimensional phase space,
approaching a stable steady state (designated by
the filled circle) at CDK1*z0.43.
(C) Time course of the system, starting with
CDK1*[0] = 0 and evolving toward the steady
state.
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Figure 4. A Two-ODE Model of CDK1 and

APC Regulation
(A) Schematic of the model. The parameters
chosen for the model were a1 = 0.1, a2 = 3, b1 = 3,
b2 = 1, K1 = 0.5, K2 = 0.5, n1 = 8, and n2 = 8.
(B) Phase space depiction of the system. The red
and green curves are the two nullclines of the
system, which can be thought of as the steady-
state response curves for the two individual legs of
the feedback loop. The filled black circle at the
intersection of the nullclines (with CDK1*z0.42
and APC*z0.37) represents a stable steady state.
One trajectory is shown, starting at CDK1*[0] = 0,
APC[0] = 0, and spiraling in toward the stable
steady state.
(C) Time course of the system, showing damped
oscillations approaching the steady state.
we have not yet built an oscillator model. Even though we were

able to produce sustained oscillations with a one-variable

Boolean model of a negative feedback loop (Figures 2A and

2D), translating the model into a differential equation eliminated

the oscillations.

Another way of representing the system’s behavior is through

a phase plot, which shows all possible activities of the system.

This is similar to the state-space plots that we used for the

Boolean analysis, but instead of having a few discrete states,

the phase plot displays a continuum, showing how the system’s

transition between states occurs through a smooth continuum

(as we would expect, given that the numerous CDK1 molecules

do not all activate simultaneously but ‘‘smoothly’’ turn on.).

The phase plot contains one dimension for each time-depen-

dent variable. Therefore, in this one-variable model, the phase

plot possesses one axis, representing the concentration of acti-

vated CDK1* (Figure 3B). In addition, the system’s phase plot

shows one stable steady state with CDK1�z0:43. If the system

starts off with CDK1 activity less or greater than 0.43, the system

will move along a trajectory back to 0.43. In other words, any

initial condition to the left or right of the steady state yields

a trajectory moving to the right or left, respectively.
A Two-ODE Model
Why did the one variable Boolean model produce oscillations

(Figures 2A and 2D), whereas the one-ODE model (Equation 2)

did not (Figure 3)? The discrete time steps of the Boolean model

help to segregate CDK1 activation from inactivation in time.

Thus, perhaps adding another ODE (Figure 4A), which acknowl-

edges the fact that APC regulation is not instantaneous, might

allow us to generate oscillations.

First, we write an ODE for the activation and inactivation of

CDK1 (Equation 3). We once again assume that CDK1 is acti-

vated by a constant rate of cyclin synthesis (a1). We assume

that the multistep process through which APC* inactivates

CDK1* is described by a Hill function. The inactivation rate is

therefore proportional to the concentration of CDK1* (the

substrate being inactivated) times a Hill function of APC*.
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Now for APC (Equation 4), we assume that its rate of its activa-

tion by CDK1* is proportional to the concentration of inactive

APC (which, assuming the total concentration of active and inac-

tive APC to be constant, we take to be 1� APC�) times a Hill

function of CDK1*, and the rate of inactivation of APC* is

described by simple mass action kinetics. The resulting two-

ODE model is:

dCDK1�

dt
=a1 � b1CDK1

� APC�n1

Kn1
1 +APC1�n1 [Equation 3]

dAPC�

dt
=a2ð1� APC�Þ CDK1�n2

Kn2
2 +CDK1�n2 � b2APC

� [Equation 4]

Again, we choose kinetic parameters and initial condition (as

described in the caption to Figure 4) and integrate the ODEs

numerically. The results are shown in Figures 4B and 4C. The

CDK1 activity initially rises as the systemmoves from interphase

(low CDK1 activity) toward M phase (high CDK1 activity)

(Figure 4C). After a lag, the APC activity begins to rise too.

Then, the rate of CDK1 inactivation (driven by APC activation)

exceeds the rate of CDK1 activation (driven by cyclin synthesis),

and the CDK1 activity starts to fall. After a few wiggles up and

down, the system approaches a steady state with intermediate

levels of both CDK1 and APC activities. Thus, we have generated

damped oscillations, but not sustained oscillations.

Figure 4B shows the phase space view of these damped oscil-

lations. The phase space is now two dimensional because there

are two time-dependent variables. There is a stable steady state

that sits at the intersection of two curves called the nullclines

(green and red curves, Figure 4B). These two nullclines can be

thought of as stimulus-response curves for the two individual

legs of the CDK1/APC system. The red nullcline (defined by

the equation dCDK1�=dt = 0) represents what the steady-state

response of CDK1* to constant levels of APC activity would be

if there were no feedback from CDK1* to APC* (Figure 4B). The

green nullcline (defined by dAPC�=dt = 0) represents what the

steady-state response of APC* to CDK1* would be if there

were no feedback fromAPC* to CDK1* (Figure 4B). For thewhole



Figure 5. A Three-ODE Model of CDK1,

Plk1, and APC Regulation
(A) Schematic of the model. The parameters
chosen for the model were a1 = 0.1, a2 = 3, a3 = 3,
b1 = 3, b2 = 1, b3 = 1, K1 = 0.5, K2 = 0.5, K3 = 0.5,
n1 = 8, n2 = 8, and n3 = 8.
(B) Phase space depiction of the system. The two
colored surfaces are two of the three null surfaces
of the system. For clarity, we have omitted the
third. The open circle at the intersection of the null
surfaces (with CDK1*z0.43, Plk1*z0.42, and
APC*z0.37) represents an unstable steady state
(or unstable spiral). One trajectory is shown,
starting at CDK1*[0] = 0, Plk1[0] = 0, APC[0] = 0,
and spiraling in toward the limit cycle.
(C) Time course of the system, showing sustained
limit cycle oscillations.
system to be in steady state, both time derivatives must be zero.

Thus, the steady state for the entire system lies where the two

nullclines intersect. The steady state is stable, and the trajectory

of the system (black curve) spirals in from the initial values of

CDK1* and APC* toward the stable steady state (Figure 4B).

A Three-ODE model
Perhaps we can improve the oscillations by adding a third

species to the model, which increases the lag between CDK1

activation and APC activation (Figure 4C). Here, we will add

Plk1 back into the model, as we did in the three-component

Booleanmodel (Figure 2C), with Plk1 assumed to act as an inter-

mediary between CDK1 and APC. We now have three ODEs

(Equations 5–7). The equation for the activation and inactivation

of CDK1 stays the same (Equation 5). The activation of Plk1 by

CDK1* is proportional to the concentration of inactive Plk1 (1 �
Plk1*) times a Hill function of CDK1*, and the inactivation is

proportional to Plk1* (Equation 6). A similar logic for the activa-

tion and inactivation of APC gives Equation 7.

dCDK1�

dt
=a1 � b1CDK1

� APC�n1

Kn1
1 +APC�n1 [Equation 5]

dPlk1�

dt
=a2ð1� Plk1�Þ CDK1�n2

Kn2
2 +CDK1�n2 � b2Plk1

� [Equation 6]

dAPC�

dt
=a3ð1� APC�Þ Plk1�n3

Kn3
3 +Plk1�n3 � b3APC

� [Equation 7]

We arbitrarily choose parameters and initial conditions, and

eureka! We now have sustained oscillations (Figures 5B and

5C). Moreover, nomatter initial conditions, the system eventually

approaches the same pattern of oscillations, with CDK1 activity

peaking first, followed by Plk1 activity and then APC activity

(Figure 5C). In the phase plane view, this pattern of oscillations

is a limit cycle, a closed circle of states that all trajectories spiral

in or out toward (black curve, Figure 5B).

With Equations 5-7, we finally have an ODEmodel of the Xeno-

pus embryonic cell cycle that exhibits sustained limit cycle oscil-

lations. The key features of this model include the presence of

negative feedback, the fact that there are more than two compo-

nents to thenegative feedback loop, and thepresenceof ultrasen-

sitivity in the individual steps of the loop. These last two features
help to generate a time delay in the negative feedback, which

helps to keep the system from settling into a stable steady state.

Linear Stability Analysis
So far, we have confined ourselves to analyzing ODE models

through simulations. This provides an intuitive feel for the

behavior of a system, but of course, it is never possible to choose

all possible values for the kinetic parameters or all possible initial

conditions. Is there a way to explain theoretically, rather than

computationally, why the one-ODE model failed to oscillate at

all, the two-ODE model at best yielded damped oscillations,

and the three-ODE model finally yielded sustained oscillations?

The answer is yes, and probably the most straightforward

approach is ‘‘linear stability analysis.’’ Linear stability analysis is

quite remarkable. It assesses the stability of the steady states of

the system, and, almost magically, allows the dynamics of the

systemtobecharacterizedevenwhen thesystemis far fromsteady

state. Toget startedwith linear stability analysis,wewill analyze the

steady state of the one-ODE model described in Equation 2.

Linear Stability Analysis of the One-ODE Model
For notational simplicity, we will refer to the rate of change of

CDK1 (dCDK1�=dt) as f. This function f can be thought of as

a function of CDK1*, which in turn is a function of time. In terms

of f, Equation 2 becomes:

f =a1 � b1CDK1
� CDK1�n1

Kn1
1 +CDK1�n1 [Equation 8]

The system will have a steady state when the derivative

dCDK1�=dt equals zero (that is, CDK1* is not changing with

respect to time), which means that:

f = 0 [Equation 9]

We can calculate the value of CDK1* for which Equation 9 is true

either numerically or algebraically. For the parameters used in

Figure 3, CDK1�ssz0:43. To the left of the steady state, f is posi-

tive (Figure 6); thus, if CDK1* is less than its steady-state value, it

will increase with time. Similarly, if CDK1* is greater than its

steady-state value, it will decrease with time. This immediately

shows that the steady state is stable. With linear stability anal-

ysis, we can push this further and determine how stable the

steady-state is, in quantitative terms.
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 879



Figure 6. Linear Stability Analysis for the One-ODE Model
The blue curve represents f as a function of CDK1*. The dashed red line
approximates f for small values of dCDK1*.
Imagine that we perturb the systemaway from the steady state

by some small increment dCDK1�. At what rate will CDK1*move

back toward CDK1*ss (and dCDK1� move back toward zero)? In

other words, how quickly does the system return to equilibrium?

This question can be addressed algebraically with a Taylor

series expansion, but perhaps it is easier to approach graphi-

cally. This is set up in Figure 6. The x axis represents the concen-

tration of active CDK1*; the y axis represents the rate of change

of CDK1*, f; and the blue curve depicts how f varies with CDK1*.

When CDK1�ssz0:43, the system is at steady state and f = 0. To

the left of the steady state, the value of f is positive, and the blue

curve lies above the x axis. To the right of the steady state, the

value of f is negative, and the blue curve lies below the axis.

If the system is perturbed from the steady state by dCDK1�,
the rate at which it will return toward the steady state is given

by the value of f at CDK1�ss + dCDK1�. For small values

ofdCDK1�, we can approximate fðCDK1�ss + dCDK1�Þ by

dCDK1� times the slope of the dashed red line (Figure 6), which

is the tangent to the blue curve at the steady state. The slope of

the dashed red line is defined to be df=dCDK1�jCDK1�ss (the value

of df=dCDK1� at CDK1�ss). Therefore, the rate at which CDK1*

goes toward the steady state, which equals the rate at which

dCDK1� goes toward zero, is given by:

ddCDK1�

dt
= slope,dCDK1� =

�
df

dCDK1�

����
CDK1�ss

�
,dCDK1�

[Equation 10]

For notational convenience, we will represent this slope by l.

Thus, Equation 10 becomes:

ddCDK1�

dt
= l,dCDK1� [Equation 11]

ODEs like Equation 11 show up over and over again in quantita-

tive biology. And, fortunately, it is a particularly simple ODE,

probably the only one that most biologists will ever need to solve

analytically. Its solution is an exponential function and describes

an exponential approach to steady state:
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dCDK1�ðtÞ= dCDK1�ð0Þelt [Equation 12]
Thus, to determine the stability of the steady state, one simply

needs to determine the value of l by evaluating the derivative

df=dCDK1� at the steady state. If l is negative, the steady

state is stable and a small perturbation of the system will return

exponentially toward the steady state with a half-time of�ln 2=l.

The bigger the absolute value of l, the faster the system

approaches the steady state and, in a sense, the more stable

the steady state is.

We can now apply linear stability analysis to our one-ODE

model (Equation 8). First, we differentiate the right side of the

ODE with respect to CDK1*:

df

dCDK1� = � b1CDK1
�n1�CDK1�n1 +Kn1

1 ð1+ n1Þ��
CDK1�n1 +Kn1

1

�2 [Equation 13]

Next, we evaluate this derivative at CDK1* =CDK*ss. Because all

kinetic parameters are positive numbers and CDK1*ss is always

nonnegative, this derivative always evaluates to a negative

number (because of the leading negative sign) and the steady

state is stable. For the particular choice of parameters given in

Figure 3, lz� 1:66.

Stability in the Two-ODE Model and Three-ODE Model
The logic behind linear stability analysis for a two-ODE model is

similar; the algebra, though, is more complicated. We start by

rewriting Equations 3 and 4, using the shorthand of f and g to

represent the rates of change of CDK1* and APC*, respectively.

dCDK1�

dt
= f =a1 � b1CDK1

� APC�n1

Kn1
1 +APC1�n1 [Equation 14]

dAPC�

dt
=g=a2ð1� APC�Þ CDK1�n2

Kn2
2 +CDK1�n2 � b2APC

�

[Equation 15]

Again, we identify the steady states of the system and consider

small perturbations of the system from the steady state. At this

point, the procedure becomes more complicated. To quantita-

tively analyze the stability of the system, we cannot simply calcu-

late one scalar value l at the steady state values (CDK1*ss,

APCss*) because the two equations are interdependent. Instead,

we need to calculate eigenvalues of the system at the steady

state. Eigenvalues are coefficients—real or complex numbers—

that yield the same information about stability that we got from

the value of l in the one-dimensional analysis. For present

purposes, we will consider them simply as numbers that can be

calculated through a straightforward procedure (see Box 1).

The eigenvalues for the two-ODEmodel turn out to be complex

numbers (Box 1). What does that mean? Remember that:

elt = eðx + iyÞt = exteiyt = extðcos yt + isin ytÞ [Equation 18]

Thus, the real part of l (x in Equation 18) determines whether

the amplitude of oscillations increases or decreases (i.e.,



Box 1. Obtaining Eigenvalues for the Two-ODE Model

First, we set up the system’s Jacobian matrix A, which is a table of

the two partial derivatives of f and the two partial derivatives of g:

A=

�
vf

vCDK1�
vf

vAPC�
vg

vCDK1�
vg

vAPC�

�
[Equation 16]

Next, we evaluate these four partial derivatives at the steady

state, yielding a matrix of four numbers, ð a b
c d

Þ. Finally, we

use these four numbers to calculate the eigenvalues. For

a two-ODE system, the eigenvalues are given by:

l1 =
t +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 4D

p

2
; l2 =

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 4D

p

2
where
t = traceðAÞ= a+d
D=detðAÞ= ad � bc

[Equation 17]

For our two-ODE model, the eigenvalues turn out to be

l1;2z� 0:91± 3:30i.

Box 2. Obtaining Eigenvalues for the Three-ODE Model

We write the three ODEs as:

dCDK1�

dt
= f =a1 � b1CDK1

� APC�n1

Kn1
1 +APC�n1 [Equation 19]

dPlk1�

dt
=g=a2ð1� Plk1�Þ CDK1�n2

Kn2
2 +CDK1�n2 � b2Plk1

�

[Equation 20]

dAPC�

dt
= h=a3ð1� APC�Þ Plk1�n3

Kn3
3 +Plk1�n3 � b3APC

�

[Equation 21]

Next, we set up the Jacobian matrix and calculate the partial

derivatives:

A=

0
@ vf

vCDK1�
vf

vPlk1�
vf

vAPC�
vg

vCDK1�
vg

vPlk1�
vg

vAPC�
vh

vCDK1�
vh

vPlk1�
vh

vAPC�

1
A [Equation 22]

Finally, we calculate the three eigenvalues. For the choice of

parameters we made in Figure 5, the eigenvalues are

�5:29; 0:88+ 3:47i; 0:88� 3:47i.
‘‘dampens’’) over time: if the real part of l is negative, the ampli-

tude of the oscillations will decrease by an exponential decay;

and if the real part of l is positive, the oscillations will grow expo-

nentially over time. The imaginary part of l (y in Equation 18)

makes the perturbation oscillate up and down (as sine and

cosine functions do). For the parameters that we have chosen

for our two-ODE system, we have damped oscillations (the real

parts of the eigenvalues are negative, and the imaginary parts

are nonzero). And one can show algebraically that, for any choice

of parameters, the real parts of the eigenvalues will be negative,

and the oscillations will be damped.

So what about our three-ODE model, which did exhibit sus-

tained oscillations? Again, we carry out a linear stability analysis

at the steady state of the system (for details, see Box 2). For the

choice of parameters that we made above, the eigenvalues are

�5:29; 0:88+ 3:47i; 0:88� 3:47i. Therefore, the steady state

is unstable because two of the eigenvalues have positive real

parts and the system exhibits sustained limit cycle oscillations

(Figures 5B and 5C).
Summary: Oscillations in ODE Models of Simple
Negative Feedback Loops
Using examples motivated by the cell cycle, we have shown that

a one-ODE model of a simple negative feedback loop cannot

oscillate; a two-ODE model can exhibit damped, but not sus-

tained, oscillations; and a three-ODE model can exhibit sus-

tained limit cycle oscillations. Linear stability analysis of the

systems’ steady states gave us an explanation for why these

behaviors are found.

From this analysis, we conclude that a simple three-ODE

negative feedback model seems like a reasonable starting point

for describing oscillations in CDK1 activity like those seen in

Xenopus embryos. Indeed, some of the earliest models of the
cell cycle were simple three-ODE negative feedback loops

(Goldbeter, 1991). The ability of a model like this to generate

sustained oscillations depends upon the length of the negative

feedback loop and the amount of ultrasensitivity assumed for

the regulatory interactions within the loop. The longer the loop

and the more switch-like the interactions, the easier it is to

produce oscillations.

Negative Feedback with a Time Delay

As mentioned above, the mechanism through which CDK1 acti-

vates APC is incompletely understood, but it is probably a multi-

step mechanism with many intermediate species and ample

possibility for the introduction of time delays. The same is true

for the inactivation of CDK1 by active APC. Given the vagaries

of the exactmechanisms, perhaps a reasonable approachwould

be to leave the formalism of ODEs andmake use instead of delay

differential equations, in which an explicit time delay relates the

change in activity of APC to an earlier activity of CDK1, and

vice versa. Consider our two-ODE model (Equations 3 and 4),

modified to include two explicit delays, t1 and t2:

dCDK1�½t�
dt

=a1 � b1CDK1
�½t� APC�½t � t1�n1

Kn1
1 +APC1�½t � t1�n1

[Equation 23]

dAPC�½t�
dt

=a2ð1� APC�½t�Þ CDK1�½t � t2�n2
Kn2

2 +CDK1�½t � t2�n2
� b2APC

�½t�

[Equation 24]
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Figure 7. A Delay Differential Equation

Model of CDK1 and APC Regulation
(A) Schematic of the model. The parameters
chosen for the model were a1 = 0.1, a2 = 3, b1 = 3,
b2 = 1,K1 = 0.5,K2 = 0.5, n1 = 8, n2 = 8, t1 = 0.5, and
t2 = 0.5.
(B) Phase space depiction of the system. The red
and green lines are the nullclines. One trajectory is
shown. The initial history for this trajectory was
CDK1*[t % 0] = 0, APC[t % 0] = 0. The trajectory
spirals in toward a limit cycle.
(C) Time course of the system, showing sustained
limit cycle oscillations.
Here, the rate of change of CDK1 activity at time t depends on

APC activity at time t- t1, and the rate of change of APC activity

at time t depends on CDK1 activity at time t�t2.
This two-equation model now yields sustained limit cycle

oscillations (Figure 7) once the time delays exceed a fairly small

critical value. Even amodel of a negative feedback loop with only

one delay differential equation can be made to oscillate. The

explicit time delays, like the discrete time steps in the Boolean

model (Figure 2), help to keep the activities of CDK1 and APC

from settling into a stable steady state.

Delay differential equation models have been used to ratio-

nalize the robust oscillations seen in some synthetic bio-

chemical oscillators based on negative feedback loops

(Stricker et al., 2008) and have been proposed to model

the embryonic cell cycle in Xenopus as well (Busenberg

and Tang, 1994).
 [Equation 25] 
Adding a Bistable Trigger

To this point, we have ignored an important part of the scheme

shown in Figure 1, the positive feedback loop (CDK1 activates

Cdc25, which in turn activates CDK1) and the double-negative

feedback loop (CDK1 inhibits Wee1, which in turn inhibits CDK1).

Nevertheless, this is probably a critical part of the network; every

eukaryotic species examined so far has at least one identifiable

Wee1 homolog, and all eukaryotic species except higher plants

have at least one Cdc25 homolog. In addition, genetic studies in

S. pombe identified these genes as critical for cell-cycle oscilla-

tions (Russell and Nurse, 1986, 1987), although, surprisingly,

they become less important in S. pombe strains engineered to

run off a single cyclin/Cdk fusion protein (Coudreuse and Nurse,

2010). Biochemical studies in Xenopus egg extracts and gene

disruption studies in human HeLa cells also provide evidence

that these feedback loops are important for the cell cycle (Pomer-

ening et al., 2005, 2008).What do these positive and double-nega-

tive feedback loops add to the oscillator?

On their own, positive or double-negative feedback loops can

accomplish several things. For example, they can amplify the

magnitude of a signal and can amplify the system’s sensitivity

to a change in a signal. However, these feedback loops are

probably best known for their potential to function as bistable,

hysteretic toggle switches (Ferrell, 2002; Ferrell and Xiong,
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2001; Gardner et al., 2000; Tyson et al., 2003). The term ‘‘bista-

ble’’ means that the system can be in either of two alternative,

stable steady states, depending upon its history, and the term

‘‘hysteretic’’ means that, once the system has been switched

from one state to the other, it tends to stay there. Indeed, exper-

imental studies have shown that, in Xenopus egg extracts, the

CDK1/Wee1/Cdc25systemdoes respond tocyclin in ahysteretic

fashion; it is easier to maintain an extract in M phase than it is to

pushan interphaseextract intoMphase (Pomerening et al., 2003;

Sha et al., 2003). Thus,mitosis is driven by a bistable trigger. How

would a bistable trigger alter our simple model of the cell cycle?

Let us begin again with our two-ODE model (Equations 3

and 4) but now add an additional positive feedback term (Equa-

tion 25, yellow) to the first equation, accounting for the fact that

active CDK1 promotes the formation of more active CDK1 in

a highly nonlinear way:
dAPC�
� CDK1�n2

�

dt

=a2ð1� APC Þ
Kn2

2 +CDK1�n2 � b2APC [Equation 26]

Moreover, we assume that the basal rate of CDK1 activation,

a1—essentially the cyclin synthesis rate—is slow compared to

the other activation and inactivation rates.

Now, let us examine the system one leg at a time. First, we look

at how the steady state APC* activity would vary with CDK1*

activity if there were no feedback from APC to CDK1. This

dependency is given by the solution of the equation:

a2ð1� APC�Þ CDK1�n2

Kn2
2 +CDK1�n2 � b2APC

� = 0 [Equation 27]

Equation 27 defines one of the nullclines for the two-ODE system

(shown in green in Figure 8B). This nullcline is a monotonic,

sigmoidal curve. When CDK1* is low, APC* is low; when

CDK1* is high,APC* is high; and in between, APC is intermediate

in activity.

However, the other nullcline (shown in red in Figure 8B), which

describes how the steady-state activity of CDK1 would vary with

APC* in the absence of feedback from CDK1 to APC, is qualita-

tively different. It is not just sigmoidal, it is S shaped. This means

that there are three possible steady-state values of CDK1* for



Figure 8. Interlinked Positive and Negative

Feedback Loops in a Two-Component

Model of CDK1 and APC Regulation
(A) Schematic of the model. The parameters
chosen for themodel were a1 = 0.02, a2 = 3, a2 = 3,
b1 = 3, b2 = 1, K1 = 0.5, K2 = 0.5, K3 = 0.5, n1 = 8,
n2 = 8, and n3 = 8.
(B) Phase space depiction of the system. The red
and green lines are the nullclines. They intersect at
an unstable steady state designated by the open
circle. All trajectories spiral in or out toward
a stable limit cycle, denoted by the closed black
loop.
(C) Time course of the system, showing sustained
limit cycle oscillations.
a given APC activity when APC* is within a certain range

(APC�z0:35 to 0:5, shown by pink shading in Figure 8B). By

applying linear stability analysis to this one-dimensional system

(or rate balance analysis, which is an easier way to analyze the

stability of steady states in one-dimensional systems [Ferrell

and Xiong, 2001]), one can show that the left and right steady

states are stable, and the middle one is an unstable threshold.

Thus, we have chosen parameters such that one leg of the

CDK1/APC system functions like a hysteretic, bistable toggle

switch. As APC* increases, CDK1* decreases toward the edge

of a cliff (at APC*z0.5) and then falls precipitously to a very

low level. Then, as APC* decreases, CDK1* rises only slightly

until APC*z0.35, whereupon it shoots sky-high.

When this toggle switch is coupled to a negative feedback

loop, the result can be stable limit cycle oscillations, and for

the parameters chosen here, that is what we get (Figures 8B

and 8C). CDK1 activity rises slowly at first and then explodes

upward toward high mitotic levels. This is followed closely by

a rapid rise in APC*, which changes the rapid rise in CDK1* to

a similarly precipitous fall. Once CDK1* has fallen enough to

turn APC back off, the system begins to slowly ramp up toward

its next spike. The oscillations in CDK1 activity shown in

Figure 8C look qualitatively similar to those seen in cycling

Xenopus egg extracts (Murray and Kirschner, 1989a; Murray

et al., 1989; Pomerening et al., 2003) and in HeLa cells in culture

(Gavet and Pines, 2010). Accordingly, models that combine

positive and negative feedback loops have dominated the cell-

cycle modeling field since its beginning (Novak and Tyson,

1993a; Tyson and Kauffman, 1975).

However, the oscillations shown in Figure 8C are qualitatively

quite different from the oscillations that we observed from our

ODE models of simple negative feedback loops (Figure 4 and

Figure 5). The oscillations for the positive-plus-negative feed-

back model are spiky, not smooth (Figure 8C), and there are

distinct slow and fast phases. This is the type of oscillation that

is exhibited by pacemaker cells in a beating heart and by dripping

water faucets, and it is termed a ‘‘relaxation oscillation.’’

Biological oscillator circuits often do include positive feedback

loops, arguing that relaxation oscillators may be particularly easy
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to evolve or may have particular perfor-

mance advantages that make them

especially suitable for biological applica-
tions (Holt et al., 2008; Pomerening et al., 2003; Skotheim

et al., 2008; Tsai et al., 2008).

Why can this two-ODE system oscillate, whereas the straight

negative feedback two-ODE system could not? It is because

positive feedback adds a type of time delay to the system,

making the ODE model behave more like a delay differential

equation model. The typical response of a system without posi-

tive feedback is a gradual, progressively slowing approach to

a steady state. In contrast, a system with positive feedback first

simmers and then explodes. This simmering phase is essentially

a time lag, and it facilitates the generation of oscillations.

Accordingly, we expect that the stable steady state seen in the

straight negative feedback two-ODE system (Figure 4) must be

destabilized in the positive-plus-negative feedback system

(Figure 8). Indeed, this is the case. Linear stability analysis

yielded eigenvalues of l1;2z� 0:91± 3:30i for the negative feed-

back-only system; now, with positive feedback added, the

eigenvalues are 1:12± 4:77i. The real part of the eigenvalues is

positive, so the steady state is unstable; the imaginary part of

the eigenvalues is nonzero, so there are oscillations.

At this point, we have an oscillator model composed of two

ODEs, representing two interlinked feedback loops. By adding

more ODEs, themodel can bemademore realistic. For example,

one could divide the process of CDK1 activation into its twomost

critical steps: the production of cyclin-CDK1 complexes through

the synthesis of cyclin and regulation of the complexes’ activity

through phosphorylation and dephosphorylation. This additional

realism comes at the cost of additional complexity; the more

ODEs, the harder it is to understand why the system behaves

the way that it does.

Conclusion
TheXenopus embryonic cell cycle is driven by a protein circuit that

acts like an autonomous oscillator. In this Primer, we set out to

explore howoscillations can arise from a protein circuit.We exam-

ined three typesofmodelsof simpleoscillatorcircuitsbasedon the

CDK1/APCsystem:Booleanmodels, ordinarydifferential equation

models, and delay differential equation models. The discrete

character of Boolean models and the time lags introduced into
4, March 18, 2011 ª2011 Elsevier Inc. 883



delay differential equation models make it relatively easy to

generate oscillations. For ODE models, it is more difficult to keep

the model from settling into a stable steady state. With everything

else equal, longer negative feedback loops are easier to get

oscillating than shorter ones, and switch-like, ultrasensitive

response functions within the negative feedback loop promote

oscillations, aswell. Adding a positive feedback loop to a negative

feedback loop tends to promote oscillations, and oscillators with

this bistable trigger have distinct characteristics that might make

them particularly suitable for biological systems.

Linear stability analysis addresses why one ODE model oscil-

lates and another one does not. Accordingly, we have presented

several examples of stability analysis for simple oscillator

circuits. For one-ODE systems, linear stability analysis is fairly

simple. For two or more ODEs, however, one must make use

of matrix algebra manipulations, calculating the eigenvalues of

the system at the steady state(s). This takes some effort, but

the effort is worth it—it provides us with an understanding of

why a circuit does or does not oscillate.

In many eukaryotic cells, the cell cycle is driven by a CDK1/

APC circuit that behaves more like a succession of decisions

or contingent events rather than an autonomous oscillator.

Nevertheless, simple models of the Xenopus oscillator, such as

the ones discussed here, provide insight that informs the under-

standing of more complex cell-cycle circuits. Just as positive

feedback loops can provide an oscillator circuit with robustness,

positive feedback loops can be used to build a succession of reli-

able switches. We suspect that the link between clock-like cell

cycles (like the Xenopus embryonic cycle) and domino-like cell

cycles (like the somatic cell cycle) is that they are both con-

structed out of bistable switches.

It is clear that the Xenopus embryonic cell cycle can operate in

the absence of transcription. Therefore, we have regarded the

cell-cycle oscillator as only a protein circuit—proteins regulate

other proteins, but not gene expression. Nonetheless, many cell-

cycle regulators in many cell types undergo periodic transcription

(Spellman et al., 1998). Indeed, in budding yeast, transcriptional

oscillations persist in the absence of CDK1 oscillations (Haase

and Reed, 1999; Orlando et al., 2008). Transcriptional regulation

undoubtedly contributes to the overall functioning of the cell-cycle

oscillator, with the protein oscillator acting as a basic core circuit

upon which additional controls have been layered.

The samemay be true of another well-studied biological oscil-

lator, the circadian clock. The slow pace of the circadian clock

makes it natural to think of the clock as arising from a transcrip-

tional gene circuit. Nevertheless, in cyanobacteria (Nakajima

et al., 2005; Rust et al., 2007; Tomita et al., 2005), Ostreococcus

(O’Neill et al., 2011), and human red blood cells (O’Neill and

Reddy, 2011), circadian oscillations can proceed in the absence

of transcription. Perhaps core protein circuits constitute the

basic circadian clock, with transcriptional circuits reinforcing

and refining the clock’s behavior (Zwicker et al., 2010).

In any case, whether one is interested in gene circuits or

protein circuits, and in cell-cycle oscillations or circadian oscilla-

tions, the basic concepts and tools that we have reviewed here—

negative feedback loops, bistable triggers, time lags, and linear

stability analysis—should prove helpful. Our hope is that the

detailed analysis of particular oscillator circuits, coupled with
884 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
the comparative analysis of different biological oscillators, will

allow us to gain insight into the basic design principles of all of

these fascinating clocks.
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