55 research outputs found

    Space Motions of the Dwarf Spheroidal Galaxies Draco and Sculptor based on HST Proper Motions with ~10-year Time Baseline

    Full text link
    We present new proper motion (PM) measurements of the dwarf spheroidal galaxies (dSphs) Draco and Sculptor using multi-epoch images obtained with the Hubble Space Telescope ACS/WFC. Our PM results have uncertainties far lower than previous measurements, even made with the same instrument. The PM results for Draco and Sculptor are (mu_W,mu_N)_Dra = (-0.0562+/-0.0099,-0.1765+/-0.0100) mas/yr and (mu_W,mu_N)_Scl = (-0.0296+/-0.0209,-0.1358 +/-0.0214) mas/yr. The implied Galactocentric velocity vectors for Draco and Sculptor have radial and tangential components: (V_rad,V_tan)_Dra = (-88.6,161.4) +/- (4.4,5.6) km/s; and (V_rad,V_tan)_Scl = (72.6,200.2) +/- (1.3,10.8) km/s. We study the detailed orbital history of both Draco and Sculptor via numerical orbit integrations. Orbital periods of Draco and Sculptor are found to be 1-2 and 2-5 Gyrs, respectively, accounting for uncertainties in the MW mass. We also study the influence of the Large Magellanic Cloud (LMC) on the orbits of Draco and Sculptor. Overall, the inclusion of the LMC increases the scatter in the orbital results. Based on our calculations, Draco shows a rather wide range of orbital parameters depending on the MW mass and inclusion/exclusion of the LMC, but Sculptor's orbit is very well constrained with its most recent pericentric approach to the MW being 0.3-0.4 Gyr ago. Our new PMs imply that the orbital trajectories of both Draco and Sculptor are confined within the Disk of Satellites (DoS), better so than implied by earlier PM measurements, and likely rule out the possibility that these two galaxies were accreted together as part of a tightly bound group.Comment: 17 pages, 8 figures, 6 tables. Accepted for publication in Ap

    Reddening, Distance, and Stellar Content of the Young Open Cluster Westerlund 2

    Full text link
    We present deep UBVICUBVI_C photometric data of the young open cluster Westerlund 2. An abnormal reddening law of RV,cl=4.14±0.08R_{V,cl}=4.14\pm0.08 was found for the highly reddened early-type members (E(BV)1.45E(B-V)\geq 1.45), whereas a fairly normal reddening law of RV,fg=3.33±0.03R_{V,fg}=3.33\pm0.03 was confirmed for the foreground early-type stars (E(BV)fg<1.05E(B-V)_{fg}<1.05). The distance modulus was determined from zero-age main-sequence (ZAMS) fitting to the reddening-corrected colour-magnitude diagram of the early-type members to be V0MV=13.9±0.14V_0-M_V=13.9\pm0.14 (random error) 0.1+0.4_{-0.1}^{+0.4} (the upper limit of systematic error) mag (d=6.0±0.40.3+1.2d = 6.0 \pm 0.4 _{-0.3}^{+1.2} kpc). To obtain the initial mass function, pre-main-sequence (PMS) stars were selected by identifying the optical counterparts of Chandra X-ray sources and mid-infrared emission stars from the Spitzer GLIMPSE source catalog. The initial mass function shows a shallow slope of Γ=1.1±0.1\Gamma=-1.1 \pm 0.1 down to logm=0.7\log m = 0.7. The total mass of Westerlund 2 is estimated to be at least 7,400 MM_{\odot}. The age of Westerlund 2 from the main-sequence turn-on and PMS stars is estimated to be \lesssim 1.5 Myr. We confirmed the existence of a clump of PMS stars located 1\sim1 arcmin north of the core of Westerlund 2, but we could not find any clear evidence for an age difference between the core and the northern clump.Comment: 25 pages, 22 figures, 6 tables, accepted for publication in MNRA

    Astrometry with the Wide-Field InfraRed Space Telescope

    Get PDF
    The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRST's design where small adjustments could greatly improve its power as an astrometric instrument.Comment: version accepted to JATI

    The Proper Motion Field of the Small Magellanic Cloud: Kinematic Evidence for its Tidal Disruption

    Full text link
    We present a new measurement of the systemic proper motion of the Small Magellanic Cloud (SMC), based on an expanded set of 30 fields containing background quasars and spanning a \sim3 year baseline, using the \textit{Hubble Space Telescope} (\textit{HST}) Wide Field Camera 3. Combining this data with our previous 5 \textit{HST} fields, and an additional 8 measurements from the \textit{Gaia}-Tycho Astrometric Solution Catalog, brings us to a total of 43 SMC fields. We measure a systemic motion of μW\mu_{W} = 0.82-0.82 ±\pm 0.02 (random) ±\pm 0.10 (systematic) mas yr1^{-1} and μN\mu_{N} = 1.21-1.21 ±\pm 0.01 (random) ±\pm 0.03 (systematic) mas yr1^{-1}. After subtraction of the systemic motion, we find little evidence for rotation, but find an ordered mean motion radially away from the SMC in the outer regions of the galaxy, indicating that the SMC is in the process of tidal disruption. We model the past interactions of the Clouds with each other based on the measured present-day relative velocity between them of 103±26103 \pm 26 km s1^{-1}. We find that in 97\% of our considered cases, the Clouds experienced a direct collision 147±33147 \pm 33 Myr ago, with a mean impact parameter of 7.5±2.57.5 \pm 2.5 kpc.Comment: 13 pages, 12 figures, 3 tables, accepted to Ap

    The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope -- IV. Aperture Masking Interferometry

    Full text link
    The James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 \micron~wavelengths, and a bright limit of 4\simeq 4 magnitudes in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is 8\simeq 8 W2 magnitudes. AMI (and KPI) achieve an inner working angle of 70\sim 70 mas that is well inside the 400\sim 400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.Comment: 30 pages, 10 figure

    The Hubble Space Telescope Survey of M31 Satellite Galaxies. II. The Star Formation Histories of Ultrafaint Dwarf Galaxies

    Get PDF
    We present the lifetime star formation histories (SFHs) for six ultrafaint dwarf (UFD; M V > − 7.0, 4.9<log10(M*(z=0)/M⊙)<5.5 ) satellite galaxies of M31 based on deep color–magnitude diagrams constructed from Hubble Space Telescope imaging. These are the first SFHs obtained from the oldest main-sequence turnoff of UFDs outside the halo of the Milky Way (MW). We find that five UFDs formed at least 50% of their stellar mass by z = 5 (12.6 Gyr ago), similar to known UFDs around the MW, but that 10%–40% of their stellar mass formed at later times. We uncover one remarkable UFD, And xiii, which formed only 10% of its stellar mass by z = 5, and 75% in a rapid burst at z ∼ 2–3, a result that is robust to choices of underlying stellar model and is consistent with its predominantly red horizontal branch. This “young” UFD is the first of its kind and indicates that not all UFDs are necessarily quenched by reionization, which is consistent with predictions from several cosmological simulations of faint dwarf galaxies. SFHs of the combined MW and M31 samples suggest reionization did not homogeneously quench UFDs. We find that the least-massive MW UFDs (M *(z = 5) ≲ 5 × 104 M ⊙) are likely quenched by reionization, whereas more-massive M31 UFDs (M *(z = 5) ≳ 105 M ⊙) may only have their star formation suppressed by reionization and quench at a later time. We discuss these findings in the context of the evolution and quenching of UFDs

    JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b

    Full text link
    Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12 μ\rm{\mu}m. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 μ\rm{\mu}m, and detailed atmospheric modeling and retrievals identify this feature as SiO2_2(s) (quartz) clouds. The SiO2_2(s) clouds model is preferred at 3.5-4.2σ\sigma versus a cloud-free model and at 2.6σ\sigma versus a generic aerosol prescription. We find the SiO2_2(s) clouds are comprised of small 0.01{\sim}0.01 μ\rm{\mu}m particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H2_2O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Comment: 19 pages, 7 figures, accepted for publication in ApJ
    corecore