884 research outputs found

    Black anodic coatings for space applications: study of the process parameters, characteristics and mechanical properties

    Get PDF
    Black inorganic anodized aluminium alloys are used for managing passive thermal control on spacecraft and for avoiding stray light in optical equipment. Spalling of these coatings has sometimes been observed after thermal cycling on 2XXX and 7XXX aluminium alloys. This phenomenon could generate particulate contamination in satellites and may affect mission lifetime. In this work, the influences of the four main steps of the process (pretreatments, sulphuric anodizing, colouring and sealing) on the coating characteristics have been studied for a 7175 T7351 aluminium alloy. The chemical heterogeneity of the coating has been underlined, and its mechanical behaviour observed through crazing. Scratch-testing, used to evaluate coating adhesion to its substrate, revealed the negative impact of thermal cycling

    Investigations into the coefficient of thermal expansion of porous films prepared on AA7175 T7351 by anodizing in sulphuric acid electrolyte

    Get PDF
    The aim of this study was to investigate the Coefficient of Thermal Expansion (CTE) of anodic films on 7175 T7351 aluminium alloy and to evaluate the influence of the film characteristics on this value. In particular, effects of porosity and post-treatments, such as coloring and sealing, were studied. Beam bending analysis was used as the experimental method and a numerical finite element model was developed to verify theoretical relationships hypotheses. The values determined and the choice of experimental method were then validated by comparing the experimental cracking temperature of anodic films with a theoretical value directly depending on the previously determined CTE

    Mechanical behavior of black anodic films on 7175 aluminium alloy for space applications

    Get PDF
    Because of their low outgassing and their thermo-optical properties, black anodized aluminium parts are often used near optical instruments to manage thermal control in space applications. However, critical cases of flaking of the film were observed after simulated thermal ageing. To understand the mechanisms leading to flaking, the influence of the initial porosity of the film on its mechanical behavior during and after the black anodizing process has been investigated. The decrease of limit tensile stress with the porosity, the coloring and the sealing combined to thermal stresses due to the difference of thermal expansion coefficients between film and substrate have been shown to cause crazing in articular conditions. For high initial porosity films, thermal cycling ageing has a detrimental influence on the adhesion measured by scratchtesting. Numerical simulation has been used to simulate the combined effects of thermal stresses and film cracking on the stress field at the interface

    New bonded assembly configuration for dynamic mechanical analysis of adhesives

    Get PDF
    A new sample configuration has been developed in order to study molecular mobility of an adhesive in a bonded assembly configuration by dynamic mechanical analysis. The torsional rectangular mode is used to provide a shear solicitation all along the adherend/adhesive interface. The initial mechanical properties of each assembly's constituent are first investigated as reference. The modulus of aluminum foils used as substrates exhibits a classic elastic component and a slight viscous part due to microstructural changes or stress relaxation. Four relaxation modes are highlighted and identified for epoxy adhesive tested as a bulk material. Its viscoelastic behavior is compared to the one of adhesive tested in assembly configuration. The relaxation modes of the adhesive remain visible in spite of the sample stiffening by aluminum foils. Relaxation modes comparison shows that the temperature of loss modulus associated with the mechanical manifestation of glass transition slightly increases for the assembly configuration. Energy losses during this relaxation are much higher in the assembly configuration. Influence of rigid aluminum substrates is discussed in terms of the adhesively bonded joint solicitation mode

    Problématique d'adhérence des revêtements anodisés inorganiques noirs pour applications spatiales

    Get PDF
    Les revêtements anodiques noirs sur alliages d’aluminium sont utilisés sur les satellites en raison de leurs propriétés thermo-optiques. Toutefois, l’observation récente d’anomalies, consistant en une fissuration de certains de ces revêtements notamment après essais d’environnement, fait craindre une contamination particulaire potentielle des équipements environnants (instruments optiques, équipements électroniques…). Jusqu’à présent quelques essais mécaniques (pelage au scotch, scratch test) ont été réalisés afin d’évaluer ces anomalies critiques. Cependant, il nous est apparu nécessaire d’approfondir la compréhension des mécanismes de dégradation, et de mettre en oeuvre des essais quantitatifs, tels que le scratch test ou la flexion quatre points, dans le but de déterminer l’énergie d’adhérence de ce type de revêtements

    Chemical characteristics, mechanical and thermo-optical properties of black anodic films prepared on 7175 aluminium alloy for space applications

    Get PDF
    Black anodic coatings are usually used on space vehicles for their thermo-optical properties. This paper presents a study of the chemical characteristics of these black anodic films, as well as their mechanical and thermo-optical properties as a function of the operational conditions of the process. The influence of the anodizing parameters was seen to affect the morphology of the coating (thickness and porosity). In particular, the electrolyte temperature was found to have a major impact on the porosity as it modifies the chemical kinetics during anodization. The impact of the preparation steps on Young’s modulus was also investigated. The colouring and sealing steps thus modified the mechanical properties at the coating surface, resulting in a Young’s modulus gradient in the film. Finally, a decrease of film porosity seemed to limit the risks of crazing then flaking, while thermo-optical properties were not affected

    Inorganic fillers influence on the radiation-induced ageing of a space-used silicone elastomer

    Get PDF
    A space-used filled silicone rubber (silica and iron oxide fillers) and its polysiloxane isolated matrix were exposed to high energy electrons in order to determine their ageing mechanisms from a structural point of view. Physicochemical analysis evidenced that both filled and unfilled materials predominantly crosslink under such irradiation. Solid-state 29Si NMR spectroscopy allowed the identification of T-type SiO3 units as the main new crosslinks formed in the polymer network. It also revealed an increase in Qtype SiO4 units in the irradiated filled sample. Thanks to the combination of NMR spectroscopy and ammonia-modified swelling tests, these Q-type units were associated with new crosslinks formed at the silica fillers-matrix interface. While the main interaction between the polysiloxane network and the fillers was shown to proceed mainly through hydrogen bonding in the pristine filled samples, it was suggested that the hydrogen bonds were progressively replaced with SiO4 chemical bonds. These additional chemical crosslinks induced evolutions of the shear modulus on the rubber plateau and crosslink density that were significantly more pronounced in the filled material than in the neat one

    Electrical conductivity of a silicone network upon electron irradiation: influence of formulation

    Get PDF
    In this study, the electrical conductivity of a silicone elastomer filled with inorganic fillers was investigated upon electron irradiation. Neat samples consisting of the isolated polysiloxane matrix (with no fillers) were studied in parallel to identify the filler contribution to this evolution. It was shown that exposure to 400 keV electron doses induced a decrease in electrical conductivity for both the filled and neat materials. This decrease was much more pronounced with the filled samples than with the neat ones. Moreover, the activation energy of electrical conductivity (Arrhenius behaviour) doubled in the filled case, while it varied only weakly for the neat case. In light of these results, structure–property relationships were proposed on the basis of the radiation-induced crosslink processes to which this material is subject. In the framework of electronic percolation theory, it is suggested that the radiation-induced formation of SiO3 crosslinks in the polysiloxane network and SiO4 crosslinks at filler–matrix interfaces affects the percolation path of the material, which can be simply modelled by a network of resistors in series. On one hand, their densification increases the overall resistance of the percolation path, which results in the observed decrease of effective electrical conductivity. On the other hand, the steep increase in activation energy in the filled material attributes to the SiO4 crosslinks becoming the most restrictive barrier along the percolation path. In spite of the misleading likeness of electrical conductivities in the pristine state, this study presented evidence that silicone formulation can affect the evolution of electrical properties in radiative environments. To illustrate this conclusion, the use of this material in space applications, especially when directly exposed to the radiative space environment, was discussed. The decrease in electrical conductivity was associated with a progressively increasing risk for the occurrence of electrostatic discharge and consequent spacecraft failures

    Enthalpy relaxation phenomena of epoxy adhesive in operational configuration: Thermal, mechanical and dielectric analyses

    Get PDF
    Thermal cycling in space environment can cause physical aging of polymers used in structural adhesive bonded joint. Later, they can initiate failure. A methodology to follow physical aging effects on their thermal, mechanical and dielectric properties is applied to a commercial epoxy adhesive. The analytic description, using Tool, Narayanaswamy and Moynihan model gives a good description of the enthalpy relaxation. It is completed by a phenomenological analysis of the evolution of the adhesive thermal transitions, mechanical properties and molecular mobility. Testedsamples with bondedassembly are representative ofin service configurations. The influence of physical aging on the adhesive and the associated bonded assemblies is analyzed

    Electrical behaviour of a silicone elastomer under simulated space environment

    Get PDF
    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around Tg in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell–Wagner–Sillars relaxation phenomenon
    corecore