12 research outputs found

    A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in myocarditis, sepsis and myocardial infarction

    Get PDF
    The monocyte β2-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte-endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent

    Advantages of block copolymer synthesis by RAFT-controlled dispersion polymerization in supercritical carbon dioxide

    Get PDF
    Reversible addition–fragmentation chain transfer (RAFT)-controlled block copolymer synthesis using dispersion polymerization in supercritical carbon dioxide (scCO2) shows unprecedented control over blocking efficiency. For PMMA-b-PBzMA and PMMA-b-PSt the blocking efficiency was quantified by measuring homopolymer contaminants using the techniques of GPC deconvolution, gradient polymer elution chromatography (GPEC), and GPC dual RI/UV detection. A new, promising method was also developed which combined GPC deconvolution and GPEC. All techniques showed that blocking efficiency was significantly improved by reducing the radical concentration and target molecular weight. Estimated values agreed well with (and occasionally exceeded) theory for PMMA-b-PBzMA. The heterogeneous process in scCO2 appeared to cause little or no further hindrance to the block copolymerization procedure when reaction conditions were optimized. High blocking efficiencies were achieved (up to 82%) even at high conversion of MMA (>95%) and high molecular weight. These data compare favorably to numerous published reports of heterogeneous syntheses of block copolymers

    Well-Architectured Poly(dimethylsiloxane)-Containing Copolymers Obtained by Radical Chemistry

    No full text
    corecore