48 research outputs found

    SEM and fractography analysis of screw thread loosening in dental implants.

    Get PDF
    Biological and technical failures of implants have already been reported. Mechanical factors are certainly of importance in implant failures, even if their exact nature has not yet been established. The abutment screw fracture or loosening represents a rare, but quite unpleasant failure. The aim of the present research is an analysis and structural examination of screw thread or abutment loosening compared with screw threads or abutment without loosening. The loosening of screw threads was compared to screw thread without loosening of three different implant systems; Branemark (Nobel Biocare, Gothenburg, Sweden), T.B.R. implant systems (Benax, Ancona, Italy) and Restore (Lifecore Biomedical, Chaska, Minnesota, USA). In this study broken screws were excluded. A total of 16 screw thread loosenings were observed (Group I) (4 Branemark, 4 T.B.R and 5 Restore), 10 screw threads without loosening were removed (Group II), and 6 screw threads as received by the manufacturer (unused) (Group III) were used as control (2 Branemark, 2 T.B.R and 2 Restore). The loosened abutment screws were retrieved and analyzed under SEM. Many alterations and deformations were present in concavities and convexities of screw threads in group I. No macroscopic alterations or deformations were observed in groups II and III. A statistical difference of the presence of microcracks were observed between screw threads with an abutment loosening and screw threads without an abutment loosening

    Influence of Maxillary Sinus Width on New Bone Formation After Transcrestal Sinus Floor Elevation: A Proof-of-Concept Prospective Cohort Study

    Get PDF
    PURPOSE: Graft maturation in the maxillary sinus requires adequate angiogenesis and osteoprogenitor cells migration from the surrounding bony walls: the aim of this study was to analyze the correlation between sinus cavity dimensions and new bone formation after transcrestal sinus floor elevation (tSFE). METHODS: Patients needing maxillary sinus augmentation (residual crest height 64 4 mm) were treated with tSFE using xenogeneic granules. Six months later, bone-core biopsies were retrieved for histological analysis in the implant insertion sites. Buccopalatal sinus width (SW) was evaluated on cone beam computed tomography, and correlations between histomorphometric and anatomical parameters were quantified by means of linear regression analysis. RESULTS: Eight consecutive patients underwent tSFE procedures: at 6 months, average percentage of newly formed bone resulted 24.2% \ub1 7.9%. Statistical analysis showed a strong inverse correlation between SW and new bone formation (R = 0.88), and a strong direct correlation between the number of exposed bone walls and new bone formation (R = 0.82). CONCLUSION: Within the limitations of this proof-of-concept study, in which a restricted number of patients were analyzed, tSFE showed more predictable results in narrow than in large sinuses, in terms of new bone formation

    Morphological and cytofluorimetric analysis of adult mesenchymal stem cells expanded ex vivo from periodontal ligament.

    Get PDF
    Many adult tissues contain a population of stem cells that have the ability of regeneration after trauma, disease or aging. Recently, there has been great interest in mesenchymal stem cells and their roles in maintaining physiological structure tissues and their studies have been considered very important and intriguing after having shown that this cell population can be expanded ex vivo to regenerate tissues not only of the mesenchymal lineage, such as intervertebral disc cartilage, bone, tooth-associated tissue, cardiomyocytes, but also to differentiate into cells derived from other embryonic layers, including neurons. Currently, different efforts have been focused on the identification of odontogenic progenitors from oral tissues. In this study we isolated and characterized a population of homogeneous human mesenchymal stem cells proliferating in culture with an attached well-spread morphology derived from periodontal ligament, tissue of ectomesenchymal origin, with the ability to form a specialized joint between alveolar bone and tooth. The adherent cells were harvested and expanded ex vivo under specific conditions and analysed by FACScan flow cytometer and morphological analysis was carried out by light, scanning and transmission electron microscopy. Our results displayed highly evident cells with a fibroblast like morphology and a secretory apparatus, probably indicating, that the enhanced function of the secretory apparatus of the mesenchymal stem cells may be associated with the secretion of molecules that are required to survive and proliferate. Moreover, the presence in periodontal ligament of CD90, CD29, CD44, CD166, CD 105, CD13 positive cells, antigens that are also identified as stromal precursors of the bone marrow, indicate that the periodontal ligament may turn out to be a new efficient source of the cells with intrinsic capacity to self-renewal, high ability to proliferate and differentiate, that can be utilized for a new approach to regenerative medicine and tissue engineering

    Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg

    Get PDF
    10noComposite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new material, Chitlac-nAg, formed by stabilized AgNPs with a polyelectrolyte solution containing Chitlac. Here we analyzed the proliferative and adhesive ability of human gingival fibroblasts (HGFs) on BisGMA/TEGDMA thermosets uncoated and coated with AgNPs in a coculture model system with Streptococcus mitis. After 48 h, HGFs well adhered onto both surfaces, while S. mitis cytotoxic response was higher in the presence of AgNPs coated thermosets. After 24 h thermosets coated with Chitlac as well as those coated with Chitlac-nAg exerted a minimal cytotoxic effect on HGFs, while after 48 h LDH release raised up to 20 %. Moreover the presence of S. mitis reduced this release mainly when HGFs adhered to Chitlac-nAg coated thermosets. The reduced secretion of collagen type I was significant in the presence of both surfaces with the co-culture system even more when saliva is added. Integrin β1 localized closely to cell membranes onto Chitlac-nAg thermosets and PKCα translocated into nuclei. These data confirm that Chitlac-nAg have a promising utilization in the field of restorative dentistry exerting their antimicrobial activity due to AgNPs without cytotoxicity for eukaryotic cells.openopenCataldi, Amelia; Gallorini, Marialucia; Di Giulio, Mara; Guarnieri, Simone; Mariggiò, Maria Addolorata; Traini, Tonino; Di Pietro, Roberta; Cellini, Luigina; Marsich, Eleonora; Sancilio, SilviaCataldi, Amelia; Gallorini, Marialucia; Di Giulio, Mara; Guarnieri, Simone; Mariggiò, Maria Addolorata; Traini, Tonino; Di Pietro, Roberta; Cellini, Luigina; Marsich, Eleonora; Sancilio, Silvi

    Changes in matrix extracellular phosphoglycoprotein expression before and during in vitro osteogenic differentiation of human dental papilla mesenchymal cells.

    Get PDF
    The purpose of this study is to characterise the expression of matrix extracellular phosphoglycoprotein (MEPE) in cultured mesenchymal cells isolated from human dental papilla (PaMCs) of impacted third molars either before or during differentiation of these cells into osteo/odontoblasts. PaMCs, like mesenchymal cells deriving from human dental pulp (DPMCs), resulted positive for a number of mesenchymal markers including CD146 and STRO-1. During the first week in culture they showed a faster proliferation rate than DPMCs, coupled to an earlier down-regulation of MEPE. Also when the cells were further cultured in osteogenic medium (containing β-glycerophosphate, ascorbic acid and dexamethasone) for 40 days, MEPE down-regulation coupled to an increased expression of osteogenic markers, such as osteocalcin and alkaline phosphatase, occurred earlier in PaMCs than in DPMCs. Thus, our data, indicating that also in PaMCs MEPE expression is higher when cells proliferate, whereas it is downregulated as cells differentiated, are in favour of a role of MEPE as an early regulator of odontogenic differentiation. We also confirm the superior proliferative potential of PaMCs in comparison with DPMCs, coupled to a more rapid induction of osteogenic differentiation. Therefore, these cells represent an optimal source to be conveniently used for dental tissue engineering and tooth regeneration

    SEM-EDX Analysis of a Submandibular Gland Salivary Calculus: A Case Report

    Get PDF
    Sialolithiasis or "salivary lithiasis" is a pathological condition that involves the formation of calcified concrements within the gland parenchyma and its ductal system of the main salivary glands of the head and neck area. Various theories of lithogenesis have been reported, but the etiology of sialoliths still remains unclear. The aim of this case report was to evaluate the biochemical composition and the surface morphology of a sialolith using energy dispersion X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). SEM images of the sialolith detected a concentric laminar architecture of the sialolith's core surrounded by radial structures that are arranged from the center to the periphery of the sialolith. EDX analysis detected a high percentage of carbon in the central area of the sialolith, indicating the abundance of organic materials. Structures corresponding to a foreign body or bacteria were not detected in any area. Thus, the sialolith presented a mixed genesis, and the increased presence of organic substances over inorganic ones suggests its phlogistic nature

    Sinus Membrane Elevation with Heterologous Cortical Lamina: A Randomized Study of a New Surgical Technique for Maxillary Sinus Floor Augmentation without Bone Graft

    No full text
    Background: The aim of this randomized controlled clinical trial was to compare the efficacy of two different techniques for maxillary sinus augmentation using a lateral window approach: Heterologous cortical lamina without any grafting material versus 100% collagenated granular collagen porcine bone. Methods: Twenty-three healthy patients with not relevant past medical history (14 women and 9 men, non-smokers, mean age 52 years, range 48–65 years) were included. In Group I, the sinus was filled with collagen porcine bone (Geno-os, OsteoBiol, Turin, Italy) and a collagen membrane (Evolution, OsteoBiol, Turin, Italy) was used to close the lateral window of the sinus. In Group II, the sinus was treated with heterologous cortical lamina only (Lamina, OsteoBiol, Turin, Italy). Results: There was a statistically significant difference in the surgical time required to complete the augmentation procedures: 18.3 ± 2.1 min for lamina treated sites versus 12.5 ± 3.1 min for porcine bone treated sites. In Group I, the mean volume of the graft was 3101 ± 321 mm3 in the immediate postoperative examination (5–7 days), while after a six-month healing period it was 2716.7 ± 432 mm3. Conclusion: This study demonstrates that the use of heterologous cortical lamina is a valid technique for the mechanical support of sinus membranes resulting in only bone tissue formation and not mixed with the graft. The graft material was biocompatible and not completely resorbed after six months, although the remains were integrated into the bone

    Peri-Implant Bone Resorption during Healing Abutment Placement: The Effect of a 0.20% Chlorhexidine Gel vs. Placebo—A Randomized Double Blind Controlled Human Study

    No full text
    Introduction. Peri-implant marginal bone loss (MBL) seems to be more pronounced in the first year of loading despite all the studies and changes implemented to reduce it. Among the different causes, the presence of a microgap makes the interface between fixture and abutment colonizable by bacteria, causing an inflammatory response and consequent bone resorption. To reduce this several local antiseptics like chlorhexidine digluconate (CHX) were used after surgical procedures. Aim. The objective was to radiologically compare the MBL when a 0.20% CHX gel or a placebo gel was applied to the implant-abutment interface during all surgical and prosthetic phases and for a follow-up period up to 12 months. Method. 32 patients (16 for each Group A and B) were enrolled and rehabilitated with a single implant (Cortex classic, Cortex, Shalomi, Israel). During each of the clinical stages a gel containing 0.20% CHX (Plak ®Gel; Polifarma Wellness Srl, Rome, Italy) or a placebo gel (Placebo, Polifarma Wellness Srl, Rome, Italy) was used as indicated by the randomization chart. In order to compare radiographic modification intraoral radiographs was taken. Also, clinical data regarding implant or prosthetic failure and gingival index were recorded. Data were presented as means and standard deviations (SD) and used for the statistical analysis. Results. All implants showed no bleeding on probing and a very small plaque score at the 1 year of follow-up. MBL was statistically significantly different between the groups in every stage. Conclusion. Results obtained showed that the use of CHX gel inside the connection significantly reduces MBL during the first year. A rigid disinfection protocol with 0.20% CHX from the time of implant insertion to crown delivery is recommended to reduce host inflammatory response and consequently MBL. This trial is registered with ClinicalTrials.gov Identifier: (Registration Number: NCT03431766)
    corecore