7 research outputs found

    Bryonolic Acid Transcriptional Control of Anti-inflammatory and Antioxidant Genes in Macrophages in Vitro and in Vivo

    No full text
    Bryonolic acid (BA) (<b>1</b>) is a naturally occurring triterpenoid with pleiotropic properties. This study characterizes the mechanisms mediating the anti-inflammatory and antioxidant activities of BA and validates the utility of BA as a tool to explore the relationships between triterpenoid structure and activity. BA reduces the inflammatory mediator NO by suppressing the expression of the inflammatory enzyme inducible nitric oxide synthase (iNOS) in LPS-activated RAW 264.7 macrophage cells. In addition, BA robustly induces the antioxidant protein heme oxygenase-1 (HO-1) in vitro and in vivo in an Nrf2-dependent manner. Further analyses of Nrf2 target genes reveal selectivity for the timing and level of gene induction by BA in treated macrophages with distinct patterns for Nrf2-regulated antioxidant genes. Additionally, the distinct expression profile of BA on Nrf2 target genes relative to oleanolic acid suggests the importance of the triterpenoid scaffold in dictating the pleiotropic effects exerted by these molecules

    Identification of a negative feedback loop in biological oxidant formation fegulated by 4-hydroxy-2-(E)-nonenal

    Get PDF
    4-Hydroxy-2-(E)-nonenal (4-HNE) is one of the major lipid peroxidation product formed during oxidative stress. At high concentrations, 4-HNE is cytotoxic and exerts deleterious effects that are often associated with the pathology of oxidative stress-driven disease. Alternatively, at low concentrations it functions as a signaling molecule that can activate protective pathways including the antioxidant Nrf2-Keap1 pathway. Although these biphasic signaling properties have been enumerated in many diseases and pathways, it has yet to be addressed whether 4-HNE has the capacity to modulate oxidative stress-driven lipid peroxidation. Here we report an auto-regulatory mechanism of 4-HNE via modulation of the biological oxidant nitric oxide (NO). Utilizing LPS-activated macrophages to induce biological oxidant production, we demonstrate that 4-HNE modulates NO levels via inhibition of iNOS expression. We illustrate a proposed model of control of NO formation whereby at low concentrations of 4-HNE a negative feedback loop maintains a constant level of NO production with an observed inflection at approximately 1 µM, while at higher 4-HNE concentrations positive feedback is observed. Further, we demonstrate that this negative feedback loop of NO production control is dependent on the Nrf2-Keap1 signaling pathway. Taken together, the careful regulation of NO production by 4-HNE argues for a more fundamental role of this lipid peroxidation product in normal physiology

    Sir2 suppresses transcription-mediated displacement of Mcm2-7 replicative helicases at the ribosomal DNA repeats.

    No full text
    Repetitive DNA sequences within eukaryotic heterochromatin are poorly transcribed and replicate late in S-phase. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). Despite the widespread association between transcription and replication timing, it remains unclear how transcription might impinge on replication, or vice versa. Here we show that, when silencing of an RNA polymerase II (RNA Pol II)-transcribed non-coding RNA at the rDNA is disrupted by SIR2 deletion, RNA polymerase pushes and thereby relocalizes replicative Mcm2-7 helicases away from their loading sites to an adjacent region with low nucleosome occupancy, and this relocalization is associated with increased rDNA origin efficiency. Our results suggest a model in which two of the major defining features of heterochromatin, transcriptional silencing and late replication, are mechanistically linked through suppression of polymerase-mediated displacement of replication initiation complexes

    Perturbed maintenance of transcriptional repression on the inactive X-chromosome in the mouse brain after Xist deletion

    Get PDF
    Abstract Background The long noncoding RNA Xist is critical for initiation and establishment of X-chromosome inactivation during embryogenesis in mammals, but it is unclear whether its continued expression is required for maintaining X-inactivation in vivo. Results By using an inactive X-chromosome-linked MeCP2-GFP reporter, which allowed us to enumerate reactivation events in the mouse brain even when they occur in very few cells, we found that deletion of Xist in the brain after establishment of X-chromosome inactivation leads to reactivation in 2–5% of neurons and in a smaller fraction of astrocytes. In contrast to global loss of both H3 lysine 27 trimethylation (H3K27m3) and histone H2A lysine 119 monoubiquitylation (H2AK119ub1) we observed upon Xist deletion, alterations in CpG methylation were subtle, and this was mirrored by only minor alterations in X-chromosome-wide gene expression levels, with highly expressed genes more prone to both derepression and demethylation compared to genes with low expression level. Conclusion Our results demonstrate that Xist plays a role in the maintenance of histone repressive marks, DNA methylation and transcriptional repression on the inactive X-chromosome, but that partial loss of X-dosage compensation in the absence of Xist in the brain is well tolerated
    corecore