138 research outputs found

    A Simple Framework for Multi-mode Spatial-Temporal Data Modeling

    Full text link
    Spatial-temporal data modeling aims to mine the underlying spatial relationships and temporal dependencies of objects in a system. However, most existing methods focus on the modeling of spatial-temporal data in a single mode, lacking the understanding of multiple modes. Though very few methods have been presented to learn the multi-mode relationships recently, they are built on complicated components with higher model complexities. In this paper, we propose a simple framework for multi-mode spatial-temporal data modeling to bring both effectiveness and efficiency together. Specifically, we design a general cross-mode spatial relationships learning component to adaptively establish connections between multiple modes and propagate information along the learned connections. Moreover, we employ multi-layer perceptrons to capture the temporal dependencies and channel correlations, which are conceptually and technically succinct. Experiments on three real-world datasets show that our model can consistently outperform the baselines with lower space and time complexity, opening up a promising direction for modeling spatial-temporal data. The generalizability of the cross-mode spatial relationships learning module is also validated

    Continuous-Time Graph Learning for Cascade Popularity Prediction

    Full text link
    Information propagation on social networks could be modeled as cascades, and many efforts have been made to predict the future popularity of cascades. However, most of the existing research treats a cascade as an individual sequence. Actually, the cascades might be correlated with each other due to the shared users or similar topics. Moreover, the preferences of users and semantics of a cascade are usually continuously evolving over time. In this paper, we propose a continuous-time graph learning method for cascade popularity prediction, which first connects different cascades via a universal sequence of user-cascade and user-user interactions and then chronologically learns on the sequence by maintaining the dynamic states of users and cascades. Specifically, for each interaction, we present an evolution learning module to continuously update the dynamic states of the related users and cascade based on their currently encoded messages and previous dynamic states. We also devise a cascade representation learning component to embed the temporal information and structural information carried by the cascade. Experiments on real-world datasets demonstrate the superiority and rationality of our approach.Comment: 9 pages, 5 figures, IJCAI 202

    Glomerular Endothelial Cells Are the Coordinator in the Development of Diabetic Nephropathy

    Get PDF
    The prevalence of diabetes is consistently rising worldwide. Diabetic nephropathy is a leading cause of chronic renal failure. The present study aimed to explore the crosstalk among the different cell types inside diabetic glomeruli, including glomerular endothelial cells, mesangial cells, podocytes, and immune cells, by analyzing an online single-cell RNA profile (GSE131882) of patients with diabetic nephropathy. Differentially expressed genes in the glomeruli were processed by gene enrichment and protein-protein interactions analysis. Glomerular endothelial cells, as well as podocytes, play a critical role in diabetic nephropathy. A subgroup of glomerular endothelial cells possesses characteristic angiogenesis genes, indicating that angiogenesis takes place in the progress of diabetic nephropathy. Immune cells such as macrophages, T lymphocytes, B lymphocytes, and plasma cells also contribute to the disease progression. By using iTALK, the present study reports complicated cellular crosstalk inside glomeruli. Dysfunction of glomerular endothelial cells and immature angiogenesis result from the activation of both paracrine and autocrine signals. The present study reinforces the importance of glomerular endothelial cells in the development of diabetic nephropathy. The exploration of the signaling pathways involved in aberrant angiogenesis reported in the present study shed light on potential therapeutic target(s) for diabetic nephropathy

    Telocytes in the urinary system

    Full text link

    Long-Term Protection of CHBP Against Combinational Renal Injury Induced by Both Ischemia-Reperfusion and Cyclosporine A in Mice.

    Get PDF
    Renal ischemia-reperfusion (IR) injury and cyclosporine A (CsA) nephrotoxicity affect allograft function and survival. The prolonged effects and underlying mechanisms of erythropoietin derived cyclic helix B peptide (CHBP) and/or caspase-3 small interfering RNA (CASP-3siRNA) were investigated in mouse kidneys, as well as kidney epithelial cells (TCMK-1), subjected to transplant-related injuries. Bilateral renal pedicles were clamped for 30 min followed by reperfusion for 2 and 8 weeks, with/without 35 mg/kg CsA gavage daily and/or 24 nmol/kg CHBP intraperitoneal injection every 3 days. The ratio of urinary albumin to creatinine was raised by IR injury, further increased by CsA and lowered by CHBP at 2, 4, 6 and 8 weeks, whereas the level of SCr was not significantly affected. Similar change trends were revealed in tubulointerstitial damage and fibrosis, HMGB1 and active CASP-3 protein. Increased apoptotic cells in IR kidneys were decreased by CsA and CHBP at 2 and/or 8 weeks. p70 S6 kinase and mTOR were reduced by CsA with/without CHBP at 2 weeks, so were S6 ribosomal protein and GSK-3β at 8 weeks, with reduced CASP-3 at both time points. CASP-3 was further decreased by CHBP in IR or IR + CsA kidneys at 2 or 8 weeks. Furthermore, in TCMK-1 cells CsA induced apoptosis was decreased by CHBP and/or CASP-3siRNA treatment. Taken together, CHBP predominantly protects kidneys against IR injury at 2 weeks and/or CsA nephrotoxicity at 8 weeks, with different underlying mechanisms. Urinary albumin/creatinine is a good biomarker in monitoring the progression of transplant-related injuries. CsA divergently affects apoptosis in kidneys and cultured kidney epithelial cells, in which CHBP and/or CASP-3siRNA reduces inflammation and apoptosis
    corecore