209 research outputs found

    Enzymatic Characterization of Leishmania major Phosphatidylethanolamine Methyltransferases LmjPEM1 and LmjPEM2

    Get PDF
    Phosphatidylcholine (PC) is the most abundant phospholipid in the membranes of the human parasite Leishmania. It is synthesized via two metabolic routes, the de novo pathway that starts with the uptake of choline, and the threefold methylation of phosphatidylethanolamine. Choline was shown to be dispensable for Leishmania; thus, the methylation pathway likely represents the primary route for PC production. Here, we have identified and characterized two phosphatidylethanolamine methyltransferases, LmjPEM1and LmjPEM2. Both enzymes are expressed in promastigotes as well as in the vertebrate form amastigotes, suggesting that these methyltransferases are important for the development of the parasite throughout its life cycle. Heterologous expression in yeast has demonstrated that LmjPEM1 and LmjPEM2 complement the choline auxotrophy phenotype of a yeast double null mutant lacking phosphatidylethanolamine methyltransferase activity. LmjPEM1 catalyzes the first, and to a lesser extent, the second methylation reaction. In contrast, LmjPEM2 has the capacity to add the second and third methyl group onto phosphatidylethanolamine to yield (lyso)PC; it can also add the first methyl group, albeit with very low efficiency

    Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers.

    No full text
    In this work, we demonstrate ultra-low-threshold, optically pumped, room-temperature lasing in GaN microdisk and micro-ring cavities containing InGaN quantum dots and fragmented quantum wells, with the lowest measured threshold at a record low of 6.2  μJ/cm2. When pump volume decreases, we observe a systematic decrease in the lasing threshold of micro-rings. The photon loss rate, γ, increases with increasing inner ring diameter, leading to a systematic decrease in the post-threshold slope efficiency, while the quality factor of the lasing mode remains largely unchanged. A careful analysis using finite-difference time-domain simulations attributes the increased γ to the loss of photons from lower-quality higher-order modes during amplified spontaneous emission

    Sound Absorption Property of Polyurethane Foam with Polyethylene Fiber

    Get PDF
    Flexible polyurethane (PU) foams with varying polyethylene fiber contents were synthesized to improve their acoustic performances. The purpose of this study was to investigate the effects of different polyethylene fiber contents of the PU foams on the resultant sound absorption, which was characterized by the impedance tube technique to obtain the incident sound absorption coefficient. Other parameters related to acoustic absorption performance of polyurethane foams were also measured such as microstructure, porosity and airflow resistivity. In this paper, these parameters were analyzed and compared with those of pure polyurethane foam. The results showed that the acoustic absorption properties of the PU foams were improved especially in the low frequency region by adding polyethylene fiber. When 0.2 g polyethylene fiber was added into the PU foam composite, the sound absorption coefficient is best especially around 125 – 315 Hz. The maximum enhancement in the acoustic properties of the PU foams was obtained by adding 0.1 g polyethylene fiber

    Domain Adaptive Code Completion via Language Models and Decoupled Domain Databases

    Full text link
    Large Language Models (LLMs) have demonstrated remarkable performance in code completion. However, due to the lack of domain-specific knowledge, they may not be optimal in completing code that requires intensive domain knowledge for example completing the library names. Although there are several works that have confirmed the effectiveness of fine-tuning techniques to adapt language models for code completion in specific domains. They are limited by the need for constant fine-tuning of the model when the project is in constant iteration. To address this limitation, in this paper, we propose kkNM-LM, a retrieval-augmented language model (R-LM), that integrates domain knowledge into language models without fine-tuning. Different from previous techniques, our approach is able to automatically adapt to different language models and domains. Specifically, it utilizes the in-domain code to build the retrieval-based database decoupled from LM, and then combines it with LM through Bayesian inference to complete the code. The extensive experiments on the completion of intra-project and intra-scenario have confirmed that kkNM-LM brings about appreciable enhancements when compared to CodeGPT and UnixCoder. A deep analysis of our tool including the responding speed, storage usage, specific type code completion, and API invocation completion has confirmed that kkNM-LM provides satisfactory performance, which renders it highly appropriate for domain adaptive code completion. Furthermore, our approach operates without the requirement for direct access to the language model's parameters. As a result, it can seamlessly integrate with black-box code completion models, making it easy to integrate our approach as a plugin to further enhance the performance of these models.Comment: Accepted by ASE202

    A Realistic 3D Non-Stationary Channel Model for UAV-to-Vehicle Communications Incorporating Fuselage Posture

    Full text link
    Considering the unmanned aerial vehicle (UAV) three-dimensional (3D) posture, a novel 3D non-stationary geometry-based stochastic model (GBSM) is proposed for multiple-input multiple-output (MIMO) UAV-to-vehicle (U2V) channels. It consists of a line-of-sight (LoS) and non-line-of-sight (NLoS) components. The factor of fuselage posture is considered by introducing a time-variant 3D posture matrix. Some important statistical properties, i.e. the temporal autocorrelation function (ACF) and spatial cross correlation function (CCF), are derived and investigated. Simulation results show that the fuselage posture has significant impact on the U2V channel characteristic and aggravate the non-stationarity. The agreements between analytical, simulated, and measured results verify the correctness of proposed model and derivations. Moreover, it is demonstrated that the proposed model is also compatible to the existing GBSM without considering fuselage posture.Comment: 12 pages, 8 figures, CNCO

    The Pyramiding of Three Key Root Traits Aid Breeding of Flood-Tolerant Rice

    Get PDF
    Flooding is constantly threatening the growth and yield of crops worldwide. When flooding kicks in, the soil becomes water-saturated and, therefore, the roots are the first organs to be exposed to excess water. Soon after flooding, the soil turns anoxic and the roots can no longer obtain molecular oxygen for respiration from the rhizosphere, rendering the roots dysfunctional. Rice, however, is a semi-aquatic plant and therefore relatively tolerant to flooding due to adaptive traits developed during evolution. In the present review, we have identified three key root traits, viz. cortical aerenchyma formation, a barrier to radial oxygen loss and adventitious root growth. The understanding of the physiological function, the molecular mechanisms, and the genetic regulation of these three traits has grown substantially and therefore forms the backbone of this review. Our synthesis of the recent literature shows each of the three key root traits contributes to flood tolerance in rice. One trait, however, is generally insufficient to enhance plant tolerance to flooding. Consequently, we suggest comprehensive use of all three adaptive traits in a pyramiding approach in order to improve tolerance to flooding in our major crops, in general, and in rice, in particular

    Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.

    Get PDF
    Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light-matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q ∼ 5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light-matter coupling in such systems.This is the author's accepted manuscript. The final version is available from PNAS at http://www.pnas.org/content/111/39/14042.abstract
    • …
    corecore