14 research outputs found
Circular RNA circLDLR facilitates cancer progression by altering the miR-30a-3p/SOAT1 axis in colorectal cancer
Abstract Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been reported to play critical regulatory roles in tumorigenesis, serving as tumor biomarkers and therapeutic targets. However, the contributions of circRNAs to CRC tumorigenesis are unclear. In our study, high expression of circLDLR was found in CRC tissues and cells and was closely associated with the malignant progression and poor prognosis of CRC patients. We demonstrated that circLDLR boosts growth and metastasis of CRC cells in vitro and in vivo, and modulates cholesterol levels in vitro. Mechanistically, we showed that circLDLR competitively binds to miR-30a-3p and prevents it from reducing the SOAT1 level, facilitating the malignant progression of CRC. In sum, our findings illustrate that circLDLR participates in CRC tumorigenesis and metastasis via the miR-30a-3p/SOAT1 axis, serving as a potential biomarker and therapeutic target in CRC
B7-H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells
The immunoregulatory protein B7-H3, a member of the B7 family, has been confirmed to be highly expressed in colon cancer. However, the exact influence of B7-H3 on the features and antitumor ability of γδT cells in colon cancer remains unknown. In the present study, we investigated that the proportions of B7-H3+ γδT cells were distinctly increased in the peripheral blood and tumor tissues of colon cancer patients. B7-H3 blockade or knockdown promoted proliferation, inhibited cell apoptosis and induced the expression of activation markers (CD25 and CD69) on Vδ2 T cells. In contrast, treatment with the B7-H3 agonist 4H7 had the opposite effect. Furthermore, B7-H3 suppressed IFN-γ expression by inhibiting T-bet in Vδ2 T cells. Moreover, B7-H3 mediated the inhibition of Vδ2 T cell cytotoxicity via the downregulation of IFN-γ and perforin/granzyme B expression. More importantly, blocking the B7-H3 function significantly enhanced the cytotoxicity of Vδ2 T cells against colon cancer cells in vivo. Therefore, the inhibition or blockade of B7-H3 is a potential immunotherapeutic approach for colon cancer
sj-docx-1-tct-10.1177_15330338231164359 - Supplemental material for LINC00460 Facilitates Cell Proliferation and Inhibits Ferroptosis in Breast Cancer Through the miR-320a/MAL2 Axis
Supplemental material, sj-docx-1-tct-10.1177_15330338231164359 for LINC00460 Facilitates Cell Proliferation and Inhibits Ferroptosis in Breast Cancer Through the miR-320a/MAL2 Axis by Chuanqiang Zhang, Liang Xu, Xiaowei Li, Yueqiu Chen, Tongguo Shi and Qiang Wang in Technology in Cancer Research & Treatment</p
sj-docx-3-tct-10.1177_15330338231164359 - Supplemental material for LINC00460 Facilitates Cell Proliferation and Inhibits Ferroptosis in Breast Cancer Through the miR-320a/MAL2 Axis
Supplemental material, sj-docx-3-tct-10.1177_15330338231164359 for LINC00460 Facilitates Cell Proliferation and Inhibits Ferroptosis in Breast Cancer Through the miR-320a/MAL2 Axis by Chuanqiang Zhang, Liang Xu, Xiaowei Li, Yueqiu Chen, Tongguo Shi and Qiang Wang in Technology in Cancer Research & Treatment</p
Systemic chemotherapy with or without hepatic arterial infusion chemotherapy for liver metastases from pancreatic cancer: a propensity score matching analysis
The significance of systemic chemotherapy (SCT) combined with hepatic arterial infusion (HAI) chemotherapy in the treatment of pancreatic ductal adenocarcinoma with liver metastases (PACLM) remains unclear. Based on previous studies, this single-center propensity score matching (PSM) study aimed to explore the efficacy of SCT with or without HAI for PACLM
B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway
Abstract.
Background:. Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism.
Methods:. GC stemness influenced by B7-H3 was detected both in vitro and in vivo. The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t-test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis.
Results:. B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo. Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis (P = 0.02).
Conclusions:. B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC
Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis
<p>Wear particle-induced osteolysis is the leading cause of aseptic loosening, which is the most common reason for THA (total hip arthroplasty) failure and revision surgery. Although existing studies suggest that osteoblast apoptosis induced by wear debris is involved in aseptic loosening, the underlying mechanism linking wear particles to osteoblast apoptosis remains almost totally unknown. In the present study, we investigated the effect of autophagy on osteoblast apoptosis induced by CoCrMo metal particles (CoPs) in vitro and in a calvarial resorption animal model. Our study demonstrated that CoPs stimulated autophagy in osteoblasts and PIO (particle-induced osteolysis) animal models. Both autophagy inhibitor 3-MA (3-methyladenine) and <i>siRNA</i> of <i>Atg5</i> could dramatically reduce CoPs-induced apoptosis in osteoblasts. Further, inhibition of autophagy with 3-MA ameliorated the severity of osteolysis in PIO animal models. Moreover, 3-MA also prevented osteoblast apoptosis in an antiautophagic way when tested in PIO model. Collectively, these results suggest that autophagy plays a key role in CoPs-induced osteolysis and that targeting autophagy-related pathways may represent a potential therapeutic approach for treating particle-induced peri-implant osteolysis.</p
A Fine Physical Map of the Rice Chromosome 4
As part of an international effort to completely sequence the rice genome, we have produced a fine bacterial artificial chromosome (BAC)-based physical map of the Oryza sativa japonica Nipponbare chromosome 4 through an integration of 114 sequenced BAC clones from a taxonomically related subspecies O. sativa indica Guangluai 4 and 182 RFLP and 407 expressed sequence tag (EST) markers with the fingerprinted data of the Nipponbare genome. The map consists of 11 contigs with a total length of 34.5 Mb covering 94% of the estimated chromosome size (36.8 Mb). BAC clones corresponding to telomeres, as well as to the centromere position, were determined by BAC-pachytene chromosome fluorescence in situ hybridization (FISH). This gave rise to an estimated length ratio of 5.13 for the long arm and 2.9 for the short arm (on the basis of the physical map), which indicates that the short arm is a highly condensed one. The FISH analysis and physical mapping also showed that the short arm and the pericentromeric region of the long arm are rich in heterochromatin, which occupied 45% of the chromosome, indicating that this chromosome is likely very difficult to sequence. To our knowledge, this map provides the first example of a rapid and reliable physical mapping on the basis of the integration of the data from two taxonomically related subspecies. [The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: S. McCouch, T. Sasaki, and Monsanto.