1,108 research outputs found

    Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers

    Full text link
    We investigate valley exciton dynamics in MoSe2 monolayers in polarization- and time-resolved photoluminescence (PL) spectroscopy at 4K. Following circularly polarized laser excitation, we record a low circular polarization degree of the PL of typically ≀5%\leq5\%. This is about 10 times lower than the polarization induced under comparable conditions in MoS2 and WSe2 monolayers. The evolution of the exciton polarization as a function of excitation laser energy and power is monitored in PL excitation (PLE) experiments. Fast PL emission times are recorded for both the neutral exciton of ≀3\leq3 ps and for the charged exciton (trion) of 12 ps.Comment: 4 pages, 3 figure

    Graphite based Schottky diodes formed on Si, GaAs and 4H-SiC substrates

    Full text link
    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.Comment: 5 pages, 3 figures, 1 tabl

    Ab-initio electron transport calculations of carbon based string structures

    Get PDF
    First-principles calculations show that monatomic strings of carbon have high cohesive energy and axial strength, and exhibit stability even at high temperatures. Due to their flexibility and reactivity, carbon chains are suitable for structural and chemical functionalizations; they form also stable ring, helix, grid and network structures. Analysis of electronic conductance of various infinite, finite and doped string structures reveal fundamental and technologically interesting features. Changes in doping and geometry give rise to dramatic variations in conductance. In even-numbered linear chains strain induces substantial decrease of conductance. The double covalent bonding of carbon atoms underlies their unusual chemical, mechanical and transport properties.Comment: 4 pages, 4 figure

    Cross-Dataset Design Discussion Mining

    Full text link
    Being able to identify software discussions that are primarily about design, which we call design mining, can improve documentation and maintenance of software systems. Existing design mining approaches have good classification performance using natural language processing (NLP) techniques, but the conclusion stability of these approaches is generally poor. A classifier trained on a given dataset of software projects has so far not worked well on different artifacts or different datasets. In this study, we replicate and synthesize these earlier results in a meta-analysis. We then apply recent work in transfer learning for NLP to the problem of design mining. However, for our datasets, these deep transfer learning classifiers perform no better than less complex classifiers. We conclude by discussing some reasons behind the transfer learning approach to design mining.Comment: accepted for SANER 2020, Feb, London, ON. 12 pages. Replication package: https://doi.org/10.5281/zenodo.359012

    Half-metallic properties of atomic chains of carbon-transition metal compounds

    Get PDF
    We found that magnetic ground state of one-dimensional atomic chains of carbon-transition metal compounds exhibit half-metallic properties. They are semiconductors for one spin-direction, but show metallic properties for the opposite direction. The spins are fully polarized at the Fermi level and net magnetic moment per unit cell is an integer multiple of Bohr magneton. The spin-dependent electronic structure can be engineered by changing the number of carbon and type of transition metal atoms. These chains, which are stable even at high temperature and some of which keep their spin-dependent electronic properties even under moderate axial strain, hold the promise of potential applications in nanospintronics.Comment: 11 pages, 3 figures, 1 table

    Growth and characterization of multiferroic BiMnO3_3 thin films

    Full text link
    We have grown epitaxial thin films of multiferroic BiMnO3_3 using pulsed laser deposition. The films were grown on SrTiO3_3 (001) substrates by ablating a Bi-rich target. Using x-ray diffraction we confirmed that the films were epitaxial and the stoichiometry of the films was confirmed using Auger electron spectroscopy. The films have a ferromagnetic Curie temperature (TCT_C) of 85±\pm5 K and a saturation magnetization of 1 ÎŒB\mu_B/Mn. The electric polarization as a function of electric field (P−EP-E) was measured using an interdigital capacitance geometry. The P−EP-E plot shows a clear hysteresis that confirms the multiferroic nature of the thin films.Comment: 4 pages, 4 figures, submitted to J. Appl. Phy
    • 

    corecore