16,410 research outputs found

    Kinematic approach to the mixed state geometric phase in nonunitary evolution

    Full text link
    A kinematic approach to the geometric phase for mixed quantal states in nonunitary evolution is proposed. This phase is manifestly gauge invariant and can be experimentally tested in interferometry. It leads to well-known results when the evolution is unitary.Comment: Minor changes; journal reference adde

    Magnetic Catalysis in AdS4

    Full text link
    We study the formation of fermion condensates in Anti de Sitter space. In particular, we describe a novel version of magnetic catalysis that arises for fermions in asymptotically AdS4 geometries which cap off in the infra-red with a hard wall. We show that the presence of a magnetic field induces a fermion condensate in the bulk that spontaneously breaks CP symmetry. From the perspective of the dual boundary theory, this corresponds to a strongly coupled version of magnetic catalysis in d=2+1.Comment: 22 pages, 4 figures. v2: References added, factors of 2 corrected, extra comments added in appendix. v3: extra comments about fermion modes in a hard wall background. v4: A final factor of

    A model for luminescence of localized state ensemble

    Full text link
    A distribution function for localized carriers, f(E,T)=1e(EEa)/kBT+τtr/τrf(E,T)=\frac{1}{e^{(E-E_a)/k_BT}+\tau_{tr}/\tau_r}, is proposed by solving a rate equation, in which, electrical carriers' generation, thermal escape, recapture and radiative recombination are taken into account. Based on this distribution function, a model is developed for luminescence from localized state ensemble with a Gaussian-type density of states. The model reproduces quantitatively all the anomalous temperature behaviors of localized state luminescence. It reduces to the well-known band-tail and luminescence quenching models under certain approximations.Comment: 14 pages, 4 figure

    Neutrino Masses and the LHC: Testing Type II Seesaw

    Full text link
    We demonstrate how to systematically test a well-motivated mechanism for neutrino mass generation (Type-II seesaw) at the LHC, in which a Higgs triplet is introduced. In the optimistic scenarios with a small Higgs triplet vacuum expectation value vd < 10^{-4} GeV, one can look for clean signals of lepton number violation in the decays of doubly charged and singly charged Higgs bosons to distinguish the Normal Hierarchy (NH), the Inverted Hierarchy (IH) and the Quasi-Degenerate (QD) spectrum for the light neutrino masses. The observation of either H+ --> tau+ nubar or H+ --> e+ nubar will be particularly robust for the spectrum test since they are independent of the unknown Majorana phases. The H++ decays moderately depend on a Majorana phase Phi2 in the NH, but sensitively depend on Phi1 in the IH. In a less favorable scenario vd > 2 10^{-4} GeV, when the leptonic channels are suppressed, one needs to observe the decays H+ --> W+ H_1 and H+ --> t bbar to confirm the triplet-doublet mixing which in turn implies the existence of the same gauge-invariant interaction between the lepton doublet and the Higgs triplet responsible for the neutrino mass generation. In the most optimistic situation, vd approx 10^{-4} GeV, both channels of the lepton pairs and gauge boson pairs may be available simultaneously. The determination of their relative branching fractions would give a measurement for the value of vd.Comment: 50 pages, 51 figures, minor corrections, one reference added, to appear in Physical Review

    New Aspects of Geometric Phases in Experiments with polarized Neutrons

    Full text link
    Geometric phase phenomena in single neutrons have been observed in polarimeter and interferometer experiments. Interacting with static and time dependent magnetic fields, the state vectors acquire a geometric phase tied to the evolution within spin subspace. In a polarimeter experiment the non-additivity of quantum phases for mixed spin input states is observed. In a Si perfect-crystal interferometer experiment appearance of geometric phases, induced by interaction with an oscillating magnetic field, is verified. The total system is characterized by an entangled state, consisting of neutron and radiation fields, governed by a Jaynes-Cummings Hamiltonian. In addition, the influence of the geometric phase on a Bell measurement, expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, is studied. It is demonstrated that the effect of geometric phase can be balanced by an appropriate change of Bell angles.Comment: 17 pages, 9 figure

    Gauged vortices in a background

    Full text link
    We discuss the statistical mechanics of a gas of gauged vortices in the canonical formalism. At critical self-coupling, and for low temperatures, it has been argued that the configuration space for vortex dynamics in each topological class of the abelian Higgs model approximately truncates to a finite-dimensional moduli space with a Kaehler structure. For the case where the vortices live on a 2-sphere, we explain how localisation formulas on the moduli spaces can be used to compute explicitly the partition function of the vortex gas interacting with a background potential. The coefficients of this analytic function provide geometrical data about the Kaehler structures, the simplest of which being their symplectic volume (computed previously by Manton using an alternative argument). We use the partition function to deduce simple results on the thermodynamics of the vortex system; in particular, the average height on the sphere is computed and provides an interesting effective picture of the ground state.Comment: Final version: 22 pages, LaTeX, 1 eps figur

    Theory of excitons in cubic III-V semiconductor GaAs, InAs and GaN quantum dots: fine structure and spin relaxation

    Full text link
    Exciton fine structures in cubic III-V semiconductor GaAs, InAs and GaN quantum dots are investigated systematically and the exciton spin relaxation in GaN quantum dots is calculated by first setting up the effective exciton Hamiltonian. The electron-hole exchange interaction Hamiltonian, which consists of the long- and short-range parts, is derived within the effective-mass approximation by taking into account the conduction, heavy- and light-hole bands, and especially the split-off band. The scheme applied in this work allows the description of excitons in both the strong and weak confinement regimes. The importance of treating the direct electron-hole Coulomb interaction unperturbatively is demonstrated. We show in our calculation that the light-hole and split-off bands are negligible when considering the exciton fine structure, even for GaN quantum dots, and the short-range exchange interaction is irrelevant when considering the optically active doublet splitting. We point out that the long-range exchange interaction, which is neglected in many previous works, contributes to the energy splitting between the bright and dark states, together with the short-range exchange interaction. Strong dependence of the optically active doublet splitting on the anisotropy of dot shape is reported. Large doublet splittings up to 600 μ\mueV, and even up to several meV for small dot size with large anisotropy, is shown in GaN quantum dots. The spin relaxation between the lowest two optically active exciton states in GaN quantum dots is calculated, showing a strong dependence on the dot anisotropy. Long exciton spin relaxation time is reported in GaN quantum dots. These findings are in good agreement with the experimental results.Comment: 22+ pages, 16 figures, several typos in the published paper are corrected in re
    corecore