275 research outputs found

    EZH2 protein: A promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies

    Get PDF
    Background and aims: A previous study of ours indicated that enhancer of zeste homologue 2 (EZH2) plays an important role in hepatocellular carcinoma (HCC) tumorigenesis. The aim of the present study was to investigate the potential diagnostic utility of EZH2 in HCC. Methods: Immunohistochemistry was performed to examine the expression dynamics of EZH2 in two independent surgical cohorts of HCC and non-malignant liver tissues to develop a diagnostic yield of EZH2, HSP70 and GPC3 for HCC detection. The diagnostic performances of EZH2 and a three-marker panel in HCC were re-evaluated by using an additional biopsy cohort. Results: Immunohistochemistry analysis demonstrated that the sensitivity and specificity of EZH2 for HCC detection was 95.8% and 97.8% in the testing cohort. Similar results were confirmed in the validation cohort. For diagnosis of well-differentiated HCCs, the sensitivity and specificity were 68.9% and 91.5% for EZH2, 62.5% and 98.5% for HSP70, 50.0% and 92.1% for GPC3, and 75.0% and 100% for a three-marker panel. In biopsies, positive cases for at least one marker increased from large regenerative nodule and hepatocellular adenoma (0/12) to focal nodular hyperplasia (2/20), dysplastic nodule (7/25), well-differentiated HCC (16/18) and moderately and poorly differentiated HCC (54/54). When at least two positive markers were considered, regardless of their identity, the positive cases were detected in 0/12 large regenerative nodules and hepatocellular adenomas, 0/20 focal nodular hyperplasias, 0/25 dysplastic nodules, 11/18 well-differentiated HCCs, 32/37 moderately differentiated HCCs and 15/17 poorly differentiated HCCs. Conclusion: Our findings suggest that EZH2 protein, as examined by immunohistochemistry, may serve as a promising diagnostic biomarker of HCCs, and the use of a three-marker panel (EZH2, HSP70 and GPC3) can improve the rate of detection of HCCs in liver biopsy tissues.published_or_final_versio

    Hydrogen bond induced change of geometry and crystallized form of copper(II) complexes: syntheses and crystal structure of complexes with Schiff-base ligands containing two imidazolyl groups

    Get PDF
    Copper(II) complexes with the Schiff base methylbis[3-(5-methylimidazol-4-ylmethyleneimino)propyl]amine (BDPA), [Cu(BDPA)][ClO4](2).H2O 1 and [Cu(BDPA)][PF6](2) 2, and with a deprotonated Schiff base ligand [H2BIPO=1,3-bis[(5-methylimidazol-4-ylmethyleneimino)propan-2-ol], {[Cu(HBIPO)]ClO4.H2O}(n) 3 and 4, have been prepared. Single-crystal structures show that 1 adopts a distorted square-pyramidal geometry with the basal plane occupied by an imidazole nitrogen, two imines and one amino nitrogen atom and the apical position by another nitrogen atom from BDPA. 2 adopts a distorted trigonal-bipyramidal geometry with two imidazole nitrogen atoms at axial positions. Both 3 and 4 adopt distorted square-pyramidal geometry with four nitrogen atoms from HBIPO in the basal plane and the apical position occupied by a deprotonated imidazole nitrogen atom from an adjacent [Cu(HBIPO)] unit, resulting in polynuclear complexes. The differences in geometry and crystallization pathway between 1 and 2, and 3 and 4, are discussed based on the crystal structures, indicating that hydrogen bonding to the basal plane imidazole group plays an important role both in the change of geometry and crystallization form of the copper(II) complexes

    Surfactant secretion in LRRK2 knock-out rats : changes in lamellar body morphology and rate of exocytosis

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca2+ release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca2+-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca2+ signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca2+ signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP

    Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8

    Get PDF
    BACKGROUND: Medulloblastoma is the most common malignant brain tumor of childhood. Improvements in clinical outcome require a better understanding of the genetic alterations to identify clinically significant biological factors and to stratify patients accordingly. In the present study, we applied cytogenetic characterization to guide the identification of biologically significant genes from gene expression microarray profiles of medulloblastoma. METHODS: We analyzed 71 primary medulloblastomas for chromosomal copy number aberrations (CNAs) using comparative genomic hybridization (CGH). Among 64 tumors that we previously analyzed by gene expression microarrays, 27 were included in our CGH series. We analyzed clinical outcome with respect to CNAs and microarray results. We filtered microarray data using specific CNAs to detect differentially expressed candidate genes associated with survival. RESULTS: The most frequent lesions detected in our series involved chromosome 17; loss of 16q, 10q, or 8p; and gain of 7q or 2p. Recurrent amplifications at 2p23-p24, 2q14, 7q34, and 12p13 were also observed. Gain of 8q is associated with worse overall survival (p = 0.0141), which is not entirely attributable to MYC amplification or overexpression. By applying CGH results to gene expression analysis of medulloblastoma, we identified three 8q-mapped genes that are associated with overall survival in the larger group of 64 patients (p < 0.05): eukaryotic translation elongation factor 1D (EEF1D), ribosomal protein L30 (RPL30), and ribosomal protein S20 (RPS20). CONCLUSION: The complementary use of CGH and expression profiles can facilitate the identification of clinically significant candidate genes involved in medulloblastoma growth. We demonstrate that gain of 8q and expression levels of three 8q-mapped candidate genes (EEF1D, RPL30, RPS20) are associated with adverse outcome in medulloblastoma

    HIV-1 gp41 Core with Exposed Membrane-Proximal External Region Inducing Broad HIV-1 Neutralizing Antibodies

    Get PDF
    The membrane-proximal external region (MPER) of the HIV-1 gp41 consists of epitopes for the broadly cross-neutralizing monoclonal antibodies 2F5 and 4E10. However, antigens containing the linear sequence of these epitopes are unable to elicit potent and broad neutralizing antibody responses in vaccinated hosts, possibly because of inappropriate conformation of these epitopes. Here we designed a recombinant antigen, designated NCM, which comprises the N- and C-terminal heptad repeats that can form a six-helix bundle (6HB) core and the MPER domain of gp41. Two mutations (T569A and I675V) previously reported to expose the neutralization epitopes were introduced into NCM to generate mutants named NCM(TA), NCM(IV), and NCM(TAIV). Our results showed that NCM and its mutants could react with antibodies specific for 6HB and MPER of gp41, suggesting that these antigens are in the form of a trimer of heterodimer (i.e., 6HB) with three exposed MPER tails. Antigen with double mutations, NCM(TAIV), elicited much stronger antibody response in rabbits than immunogens with single mutation, NCM(TA) and NCM(IV), or no mutation, NCM. The purified MPER-specific antibodies induced by NCM(TAIV) exhibited broad neutralizing activity, while the purified 6HB-specific antibodies showed no detectable neutralizing activity. Our recombinant antigen design supported by an investigation of its underlying molecular mechanisms provides a strong scientific platform for the discovery of a gp41 MPER-based AIDS vaccine

    Search for ψ(3770)→ charmless final states involving η or π0 mesons

    Get PDF
    We search for ψ(3770) → π+π-η, K+K-η, pp̄η, ρ0π+π-η, K+K-π+π-η, pp̄π+π-η, pp̄K+K-η and pp̄K+K- π0 using data samples of 17.3 and 6.5 pb-1 integrated luminosities recorded at the center-of-mass energies of 3.773 and 3.65 GeV, respectively, by the BES-II detector operating at the BEPC collider. We obtain cross section measurements at both energies and upper limits on ψ(3770) decay branching fractions to the final states studied. © © Springer-Verlag / Società Italiana di Fisica 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201
    corecore