51 research outputs found

    Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers

    Get PDF
    We show that, because of the inevitable twist and lattice mismatch in heterobilayers of transition metal dichalcogenides, interlayer excitons have six-fold degenerate light cones anomalously located at finite velocities on the parabolic energy dispersion. The photon emissions at each light cone are elliptically polarized, with major axis locked to the direction of exciton velocity, and helicity specified by the valley indices of the electron and the hole. These finite-velocity light cones allow unprecedented possibilities to optically inject valley polarization and valley current, and the observation of both direct and inverse valley Hall effects, by exciting interlayer excitons. Our findings suggest potential excitonic circuits with valley functionalities, and unique opportunities to study exciton dynamics and condensation phenomena in semiconducting 2D heterostructures.Comment: Including the Supplemental Material

    Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction

    Get PDF
    We investigate the optical control possibilities of spin-valley qubit carried by single electrons localized in nanostructures of monolayer TMDs, including small quantum dots formed by lateral heterojunction and charged impurities. The quantum controls are discussed when the confinement induces valley hybridization and when the valley hybridization is absent. We show that the bulk valley and spin optical selection rules can be inherited in different forms in the two scenarios, both of which allow the definition of spin-valley qubit with desired optical controllability. We also investigate nuclear spin induced decoherence and quantum control of electron-nuclear spin entanglement via intervalley terms of the hyperfine interaction. Optically controlled two-qubit operations in a single quantum dot are discussed.Comment: 17pages, 10 figure

    Quantum-state engineering in cavity magnomechanics formed by two-dimensional magnetic materials

    Full text link
    Cavity magnomechanics has become an ideal platform to explore macroscopic quantum effects. Bringing together magnons, phonons, and photons in a single physical system, it opens many opportunities for quantum technologies. It was conventionally realized by a yttrium iron garnet, which exhibits a linear magnon-phonon coupling m^†m^(b^†+b^)\hat{m}^\dag\hat{m}(\hat{b}^\dag+\hat{b}), with m^\hat{m} and b^\hat{b} being the magnon and phonon modes. Inspired by the recent realization of two-dimensional (2D) magnets, we propose a new cavity magnomechanical system with one of the cavity mirror formed by a 2D magnetic material. Its anisotropic magnetostrictive interaction induces a unique nonlinear phonon-magnon coupling m^†m^(b^†+b^)2\hat{m}^\dag\hat{m}(\hat{b}^\dag+\hat{b})^2. It is found that a stable squeezing of the phonon and bi- and tri-partite entanglements among the three modes are generated in the regimes with a suppressed phonon number. Compared with previous schemes, ours does not require any extra nonlinear interaction and reservoir engineering and is robust against the thermal fluctuation. Enriching the realization of cavity magnomechanics, our system exhibits its superiority in quantum-state engineering due to the versatile interactions enabled by its 2D feature.Comment: 7 pages and 3 figures in the main text. 3 pages in the supplemental materia

    Correlation-induced symmetry-broken states in large-angle twisted bilayer graphene on MoS2

    Full text link
    Strongly correlated states are commonly emerged in twisted bilayer graphene (TBG) with magic-angle, where the electron-electron (e-e) interaction U becomes prominent relative to the small bandwidth W of the nearly flat band. However, the stringent requirement of this magic angle makes the sample preparation and the further application facing great challenges. Here, using scanning tunneling microscopy (STM) and spectroscopy (STS), we demonstrate that the correlation-induced symmetry-broken states can also be achieved in a 3.45{\deg} TBG, via engineering this non-magic-angle TBG into regimes of U/W > 1. We enhance the e-e interaction through controlling the microscopic dielectric environment by using a MoS2 substrate. Simultaneously, the bandwidth of the low-energy van Hove singularity (VHS) peak is reduced by enhancing the interlayer coupling via STM tip modulation. When partially filled, the VHS peak exhibits a giant splitting into two states flanked the Fermi level and shows a symmetry-broken LDOS distribution with a stripy charge order, which confirms the existence of strong correlation effect in our 3.45{\deg} TBG. Our result paves the way for the study and application of the correlation physics in TBGs with a wider range of twist angle
    • …
    corecore