28 research outputs found

    HBV HBx-Downregulated lncRNA LINC01010 Attenuates Cell Proliferation by Interacting with Vimentin

    No full text
    Hepatitis B virus (HBV) infection is closely related to hepatocellular carcinoma (HCC) development. To investigate the mechanism of HBV causing HCC, we previously analyzed the transcription of the HBV-transgenic cell line HepG2-4D14 and parental HepG2 cells and identified a subset of long noncoding RNAs (lncRNAs) differentially expressed between them. In this study, we focus on lncRNA LINC01010, as it is significantly downregulated in HepG2-4D14 cells and in liver tissues of HCC patients, and positively correlated with survival. We found that HBV-encoded HBx can reduce the transcription of LINC01010. Functional analysis showed that the overexpression of LINC01010 inhibits proliferation, migration and invasion of HepG2 cells while the knockdown of LINC01010 promotes these processes. By taking the approach of RNA immunoprecipitation (RIP) and mass spectrometry, we identified that LINC01010 can interact with vimentin. Further studies demonstrated that LINC01010 negatively affects the vimentin network extension and causes more rapid subunit exchange and lower stability of vimentin filaments. In addition, LINC01010 can reduce the amount of insoluble vimentin within cells, which suggests that LINC01010 interfers with vimentin polymerization. These data indicate that LINC01010 can inhibit the assembly of vimentin filament. Thus, we revealed that HBV HBx-downregulated LINC01010, which suppresses cell proliferation and migration by negatively regulating the formation of vimentin filament. Taken together, LINC01010 is a potential tumor suppressor that may restrain HBV-related HCC development

    Sleep Spindle Characteristics and Relationship with Memory Ability in Patients with Obstructive Sleep Apnea-Hypopnea Syndrome

    No full text
    Obstructive sleep apnea syndrome (OSAS) causes intermittent hypoxia and sleep disruption in the brain, resulting in cognitive dysfunction, but its pathogenesis is unclear. The sleep spindle wave is a transient neural event involved in sleep memory consolidation and synaptic plasticity. This study aimed to investigate the characteristics of sleep spindle activity and its relationship with memory ability in patients with OSAS. A total of 119 patients, who were divided into the OSAS group (n = 59, AHI ≥ 15) and control group (n = 60, AHI < 15) according to the Apnea Hypopnea Index (AHI), were enrolled and underwent polysomnography. Power spectral density (PSD) and omega complexity were used to analyze the characteristics of single and different brain regions of sleep spindles. Memory-related cognitive functions were assessed in all subjects, including logical memory, digit ordering, pattern recognition, spatial recognition and spatial working memory. The spindle PSD of the OSAS group was significantly slower than the control group, regardless of the slow, fast, or total spindle. The complexity of the spindles in the prefrontal and central region decreased significantly, whereas it increased in the occipital region. Sleep spindle PSD was positively correlated with logical memory and working memory. Spindle complexity was positively correlated with immediate logical and visual memory in the prefrontal region and positively correlated with immediate/delayed logical and working memory in the central region. In contrast, spindle complexity in the occipital region negatively correlated with delayed logical memory. Spindle hyperconnectivity in the prefrontal and central regions underlies declines in logical, visual and working memory and weak connections in the occipital spindles underlie the decline in delayed logical memory

    Anomaly prediction of CT equipment based on IoMT data

    No full text
    Abstract Background Large-scale medical equipment, which is extensively implemented in medical services, is of vital importance for diagnosis but vulnerable to various anomalies and failures. Most hospitals that conduct regular maintenance have been suffering from medical equipment-related incidents for years. Currently, the Internet of Medical Things (IoMT) has emerged as a crucial tool in monitoring the real-time status of the medical equipment. In this paper, we develop an IoMT system of Computed Tomography (CT) equipment in the West China Hospital, Sichuan University and collected the system status time-series data. Novel multivariate time-series classification models and frameworks are proposed to predict the anomalies of CT equipment. The important features that are closely related to the equipment anomalies are identified with the model. Methods We extracted the real-time CT equipment status time-series data of 11 equipment between May 19, 2020 and May 19, 2021 from the IoMT, which includes the equipment oil temperature, anode voltage, etc. The arcs are identified as labels of anomalies due to their relationship with decreased imaging quality and CT equipment failures. To improve prediction accuracy, the statistics and transformations of the raw historical time-series data segment in the sliding time window are used to construct new features. Due to the particularity of time-series data, two frameworks are proposed for splitting the training and test sets. Then the Decision Tree, Support Vector Machine, Logistic Regression, Naive Bayesian, and K-Nearest Neighbor classification models are used to classify the system status. We also compare our model to state-of-the-art models. Results The results show that the anomaly prediction accuracy and recall of our method are 79% and 77%, respectively. The oil temperature and anode voltage are identified as the decisive features that may lead to anomalies. The proposed model outperforms the others when predicting the anomalies of the CT equipment based on our dataset. Conclusions The proposed method could predict the state of CT equipment and be used as a reference for practical maintenance, where unexpected anomalies of medical equipment could be reduced. It also brings new insights into how to handle non-uniform and imbalanced time series data in practical cases

    DaTo: an atlas of biological databases and tools

    No full text
    This work presents DaTo, a semi-automatically generated world atlas of biological databases and tools. It extracts raw information from all PubMed articles which contain exact URLs in their abstract section, followed by a manual curation of the abstract and the URL accessibility. DaTo features a user-friendly query interface, providing extensible URL-related annotations, such as the status, the location and the country of the URL. A graphical interaction network browser has also been integrated into the DaTo web interface to facilitate exploration of the relationship between different tools and databases with respect to their ontology-based semantic similarity. Using DaTo, the geographical locations, the health statuses, as well as the journal associations were evaluated with respect to the historical development of bioinformatics tools and databases over the last 20 years. We hope it will inspire the biological community to gain a systematic insight into bioinformatics resources. DaTo is accessible via http://bis.zju.edu.cn/DaTo/

    DaTo: an atlas of biological databases and tools

    No full text
    Li Q, Zhou Y, Jiao Y, et al. DaTo: an atlas of biological databases and tools. JOURNAL OF INTEGRATIVE BIOINFORMATICS. 2016;13(4): 297.This work presents DaTo, a semi-automatically generated world atlas of biological databases and tools. It extracts raw information from all PubMed articles which contain exact URLs in their abstract section, followed by a manual curation of the abstract and the URL accessibility. DaTo features a user-friendly query interface, providing extensible URL-related annotations, such as the status, the location and the country of the URL. A graphical interaction network browser has also been integrated into the DaTo web interface to facilitate exploration of the relationship between different tools and databases with respect to their ontology-based semantic similarity. Using DaTo, the geographical locations, the health statuses, as well as the journal associations were evaluated with respect to the historical development of bioinformatics tools and databases over the last 20 years. We hope it will inspire the biological community to gain a systematic insight into bioinformatics resources. DaTo is accessible via http://bis.zju.edu.cn/DaTo/

    Enabling 4.6 V LiNi0.6Co0.2Mn0.2O2 cathodes with excellent structural stability: combining surface LiLaO2 self-assembly and subsurface La-pillar engineering

    No full text
    Although Ni-rich layered materials with the general formula LiNi1-x-yCoxMnyO2 (0 &lt; x, y &lt; 1, NCM) hold great promise as high-energy-density cathodes in commercial lithium-ion batteries, their practical application is greatly hampered by poor cyclability and safety. Herein, a LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode modified with a surface self-assembling LiLaO2 coating and subsurface La pillars demonstrates stabilized cycling at 4.6 V. The LiLaO2-coated NCM622 benefits from the suppression of interfacial side reactions, which relieves the layer-to-rock salt phase transformation and therefore improves the capacity retention under high voltages. Moreover, the La dopant, as a pillar in the NCM622 lattice, plays a dual role in expanding the c lattice parameter to enhance the Li-ion diffusion capability, as well as suppressing Ni antisite defect formation upon cycling. Consequently, the dual-modified NCM622 cathode exhibits an initial Coulombic efficiency of over 85% and a high capacity of over 200 mAh g-1 at 0.1 C. A specific capacity of 188 mAh g-1 with a capacity retention of 76% is achieved at 1 C after 200 cycles within a voltage range of 3.0-4.6 V. These findings lay a solid foundation for the materials design and performance optimization of high-energy-density cathodes for Li-ion batteries

    A Heat Shock Transcription Factor <i>TrHSFB2a</i> of White Clover Negatively Regulates Drought, Heat and Salt Stress Tolerance in Transgenic <i>Arabidopsis</i>

    No full text
    Heat shock transcription factors (HSF) are divided into classes A, B and C. Class A transcription factors are generally recognized as transcriptional activators, while functional characterization of class B and C heat shock transcription factors have not been fully developed in most plant species. We isolated and characterized a novel HSF transcription factor gene, TrHSFB2a (a class B HSF) gene, from the drought stress-sensitive forage crop species, white clover (Trifolium repens). TrHSFB2a was highly homologous to MtHSFB2b, CarHSFB2a, AtHSFB2b and AtHSFB2a. The expression of TrHSFB2a was strongly induced by drought (PEG6000 15% w/v), high temperature (35 °C) and salt stresses (200 mM L−1 NaCl) in white clover, while subcellular localization analysis showed that it is a nuclear protein. Overexpression of the white clover gene TrHSFB2a in Arabidopsis significantly reduced fresh and dry weight, relative water contents (RWC), maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS), while it promoted leaf senescence, relative electrical conductivity (REC) and the contents of malondialdehyde (MDA) compared to a wild type under drought, heat and salt stress conditions of Arabidopsis plants. The silencing of its native homolog (AtHSFB2a) by RNA interference in Arabidopsis thaliana showed opposite trends by significantly increasing fresh and dry weights, RWC, maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS) and reducing REC and MDA contents under drought, heat and salt stress conditions compared to wild type Arabidopsis plants. These phenotypic and physiological indicators suggested that the TrHSFB2a of white clover functions as a negative regulator of heat, salt and drought tolerance. The bioinformatics analysis showed that TrHSFB2a contained the core B3 repression domain (BRD) that has been reported as a repressor activator domain in other plant species that might repress the activation of the heat shock-inducible genes required in the stress tolerance process in plants. The present study explores one of the potential causes of drought and heat sensitivity in white clover that can be overcome to some extent by silencing the TrHSFB2a gene in white clover

    DaTo : an atlas of biological databases and tools

    No full text
    This work presents DaTo, a semi-automatically generated world atlas of biological databases and tools. It extracts raw information from all PubMed articles which contain exact URLs in their abstract section, followed by a manual curation of the abstract and the URL accessibility. DaTo features a user-friendly query interface, providing extensible URL-related annotations, such as the status, the location and the country of the URL. A graphical interaction network browser has also been integrated into the DaTo web interface to facilitate exploration of the relationship between different tools and databases with respect to their ontology-based semantic similarity. Using DaTo, the geographical locations, the health statuses, as well as the journal associations were evaluated with respect to the historical development of bioinformatics tools and databases over the last 20 years. We hope it will inspire the biological community to gain a systematic insight into bioinformatics resources.publishe
    corecore