4 research outputs found

    Dopamine transporter genotype is associated with a lateralized resistance to distraction during attention selection

    Get PDF
    Although lateral asymmetries in orienting behavior are evident across species and have been linked to interhemispheric asymmetries in dopamine signaling, the relative contribution of attentional versus motoric processes remains unclear. Here we took a cognitive genetic approach to adjudicate between roles for dopamine in attentional versus response selection. A sample of nonclinical adult humans (N = 518) performed three cognitive tasks (spatial attentional competition, spatial cueing, and flanker tasks) that varied in the degree to which they required participants to resolve attentional or response competition. All participants were genotyped for two putatively functional tandem repeat polymorphisms of the dopamine transporter gene (DAT1; SLC6A3), which are argued to influence the level of available synaptic dopamine and confer risk to disorders of inattention. DAT1 genotype modulated the task-specific effects of the various task-irrelevant stimuli across both the spatial competition and spatial cueing but not flanker tasks. Specifically, compared with individuals carrying one or two copies of the 10-repeat DAT1 allele, individuals without this allele demonstrated an immunity to distraction, such that response times were unaffected by increases in the number of distractor stimuli, particularly when these were presented predominantly in the left hemifield. All three genotype groups exhibited uniform costs of resolving leftward response selection in a standard flanker task. None of these significant effects could be explained by speed–accuracy trade-offs, suggesting that participants without the 10-repeat allele of the DAT1 tandem repeat polymorphism possess an enhanced attentional ability to suppress task-irrelevant stimuli in the left hemifield

    Proprioceptive Movement Illusions Due to Prolonged Stimulation: Reversals and Aftereffects

    Get PDF
    Background. Adaptation to constant stimulation has often been used to investigate the mechanisms of perceptual coding, but the adaptive processes within the proprioceptive channels that encode body movement have not been well described. We investigated them using vibration as a stimulus because vibration of muscle tendons results in a powerful illusion of movement. Methodology/Principal Findings. We applied sustained 90 Hz vibratory stimulation to biceps brachii, an elbow flexor and induced the expected illusion of elbow extension (in 12 participants). There was clear evidence of adaptation to the movement signal both during the 6-min long vibration and on its cessation. During vibration, the strong initial illusion of extension waxed and waned, with diminishing duration of periods of illusory movement and occasional reversals in the direction of the illusion. After vibration there was an aftereffect in which the stationary elbow seemed to move into flexion. Muscle activity shows no consistent relationship with the variations in perceived movement. Conclusion. We interpret the observed effects as adaptive changes in the central mechanisms that code movement in direction-selective opponent channels

    Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    Get PDF
    The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms

    Structure of native lens connexin 46/50 intercellular channels by cryo-EM

    No full text
    Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects
    corecore