553 research outputs found

    A neutron scattering study of the interplay between structure and magnetism in Ba(Fe1x_{1-x}Cox_{x})2_2As2_2

    Full text link
    Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe1x_{1-x}Cox_x)2_2As2_2. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe2_2As2_2 into two distinct transitions. For xx=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (TTO=99±0.5T_{\mathrm{TO}}=99 \pm 0.5 K) and the antiferromagnetic transition occurs at TAF=93±0.5T_{\mathrm{AF}}=93 \pm 0.5 K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x0.055x \approx 0.055. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice

    Size-Dependent Lattice Structure and Confinement Properties in CsPbI₃ Perovskite Nanocrystals: Negative Surface Energy for Stabilization

    Get PDF
    CsPbI₃ nanocrystals with narrow size distributions were prepared to study the size-dependent properties. The nanocrystals adopt the perovskite (over the nonperovskite orthorhombic) structure with improved stability over thin-film materials. Among the perovskite phases (cubic α, tetragonal β, and orthorhombic γ), the samples are characterized by the γ phase, rather than α, but may have a size-dependent average tilting between adjacent octahedra. Size-dependent lattice constants systematically vary 3% across the size range, with unit cell volume increasing linearly with the inverse of size to 2.1% for the smallest size. We estimate the surface energy to be from −3.0 to −5.1 eV nm⁻² for ligated CsPbI₃ nanocrystals. Moreover, the size-dependent bandgap is best described using a nonparabolic intermediate confinement model. We experimentally determine the bulk bandgap, effective mass, and exciton binding energy, concluding with variations from the bulk α-phase values. This provides a robust route to understanding γ-phase properties of CsPbI₃

    Modified Magnetic Ground State in Nimn (2) O (4) Thin Films

    Full text link
    The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K

    On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L1(0) CoPt (001) and FePt (001) thin films

    Get PDF
    Two series of epitaxial CoPt and FePt films, with nominal thicknesses of 42 or 50 nm, were prepared by sputtering onto single-crystal MgO(001) substrates in order to investigate the chemical ordering and the resultant magnetic properties as a function of alloy composition. In the first series, the film composition was kept constant, while the substrate temperature was increased from 144 to 704 degrees C. In the second series the substrate temperature was kept constant at 704 degrees C for CoPt and 620 degrees C for FePt, while the alloy stoichiometry was varied in the nominal range of 40-60-at. % Co(Fe). Film compositions and thicknesses were measured via Rutherford backscattering spectrometry. The lattice and long-range order parameter for the L1(0) phase were obtained for both sets of films using x-ray diffraction. The room-temperature magnetocrystalline anisotropy constants were determined for a subset of the films using torque magnetometry. The order parameter was found to increase with increasing temperature, with ordering occurring more readily in FePt when compared with CoPt. A perpendicular anisotropy developed in CoPt for substrate temperatures above 534 degrees C and in FePt above 321 degrees C. The structure and width of the magnetic domains in CoPt and FePt, as seen by magnetic force microscopy, also demonstrated an increase in magnetic anisotropy with increasing temperature. For the films deposited at the highest temperatures (704 degrees C for CoPt and 620 degrees C for FePt), the order parameter reached a maximum near the equiatomic composition, whereas the magnetocrystalline anisotropy increased as the concentration of Co or Fe was increased from below to slightly above the equiatomic composition. It is concluded that nonstoichiometric L1(0) CoPt and FePt, with a slight excess of Co or Fe, are preferable for applications requiring the highest anisotropies

    Charge density wave formation in R2R_{2}Te5_{5} (RR=Nd, Sm and Gd)

    Full text link
    The rare earth (RR) tellurides R2R_2Te5_5 have a crystal structure intermediate between that of RRTe2_2 and RRTe3_3, consisting of alternating single and double Te planes sandwiched between RRTe block layers. We have successfully grown single crystals of Nd2_2Te5_5, Sm2_2Te5_5 and Gd2_2Te5_5 from a self flux, and describe here the first evidence for charge density wave formation in these materials. The superlattice patterns for all three compounds are relatively complex, consisting at room temperature of at least two independent wavevectors. Consideration of the electronic structure indicates that to a large extent these wave vectors are separately associated with sheets of the Fermi surface which are principally derived from the single and double Te layers.Comment: 10 pages, 6 figure

    Pressure-induced quenching of the charge-density-wave state observed by x-ray diffraction

    Full text link
    We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe3_3 and CeTe3_3 compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave-vector, and provide direct evidence for a pressure-induced quenching of the CDW phase. We observe subtle differences between the chemical and mechanical compression of the lattice. We account for these with a scenario where the effective dimensionality in these CDW systems is dependent on the type of lattice compression and has a direct impact on the degree of Fermi surface nesting and on the strength of fluctuation effects
    corecore