883 research outputs found

    Anomalous Elasticity of Polymer Cholesterics

    Full text link
    We show that polymer cholesterics have much longer pitches than comparable short molecule cholesterics, due to their anomalous elasticity. The pitch PP of a chiral mixture with concentration cc near the racemic (non-chiral) concentration cc^* diverges like ccν\vert c-c^*\vert^{-\nu} with ν=1.43±0.04\nu=1.43 \pm 0.04 (for short molecule cholesterics ν=1\nu=1). The short molecule law is recovered for polymers of finite molecular length \ell once the pitch is longer than a length that diverges like γ\ell^\gamma with γ=0.67±0.01\gamma=0.67 \pm 0.01. Our predictions could be tested by measurements of the pitch in DNA.Comment: 12 pages, Plain TeX, (1 postscript figure, compressed, uuencoded and appended to paper), minor corrections, IASSNS-HEP-94/4

    Sliding Columnar Phase of DNA-Lipid Complexes

    Full text link
    We introduce a simple model for DNA-cationic-lipid complexes in which galleries between planar bilayer lipid lamellae contain DNA 2D smectic lattices that couple orientationally and positionally to lattices in neighboring galleries. We identify a new equilibrium phase in which there are long-range orientational but not positional correlations between DNA lattices. We discuss properties of this new phase such as its X-ray structure factor S(r), which exhibits unusual exp(- const.ln^2 r) behavior as a function of in-plane separation r.Comment: This file contains 4 pages of double column text and one postscript figure. This version includes interactions between dislocations in a given gallery and presents an improved estimate of the decoupling temperature. It is the published versio

    Ground state properties of solid-on-solid models with disordered substrates

    Full text link
    We study the glassy super-rough phase of a class of solid-on-solid models with a disordered substrate in the limit of vanishing temperature by means of exact ground states, which we determine with a newly developed minimum cost flow algorithm. Results for the height-height correlation function are compared with analytical and numerical predictions. The domain wall energy of a boundary induced step grows logarithmically with system size, indicating the marginal stability of the ground state, and the fractal dimension of the step is estimated. The sensibility of the ground state with respect to infinitesimal variations of the quenched disorder is analyzed.Comment: 4 pages RevTeX, 3 eps-figures include

    Non-Ergodic Dynamics of the 2D Random-phase Sine-Gordon Model: Applications to Vortex-Glass Arrays and Disordered-Substrate Surfaces

    Full text link
    The dynamics of the random-phase sine-Gordon model, which describes 2D vortex-glass arrays and crystalline surfaces on disordered substrates, is investigated using the self-consistent Hartree approximation. The fluctuation-dissipation theorem is violated below the critical temperature T_c for large time t>t* where t* diverges in the thermodynamic limit. While above T_c the averaged autocorrelation function diverges as Tln(t), for T<T_c it approaches a finite value q* proportional to 1/(T_c-T) as q(t) = q* - c(t/t*)^{-\nu} (for t --> t*) where \nu is a temperature-dependent exponent. On larger time scales t > t* the dynamics becomes non-ergodic. The static correlations behave as Tln{x} for T>T_c and for T<T_c when x < \xi* with \xi* proportional to exp{A/(T_c-T)}. For scales x > \xi*, they behave as (T/m)ln{x} where m is approximately T/T_c near T_c, in general agreement with the variational replica-symmetry breaking approach and with recent simulations of the disordered-substrate surface. For strong- coupling the transition becomes first-order.Comment: 12 pages in LaTeX, Figures available upon request, NSF-ITP 94-10

    A variational study of the random-field XY model

    Get PDF
    A disorder-dependent Gaussian variational approach is applied to the dd-dimensional ferromagnetic XY model in a random field. The randomness yields a non extensive contribution to the variational free energy, implying a random mass term in correlation functions. The Imry-Ma low temperature result, concerning the existence (d>4d>4) or absence (d<4d < 4) of long-range order is obtained in a transparent way. The physical picture which emerges below d=4d=4 is that of a marginally stable mixture of domains. We also calculate within this variational scheme, disorder dependent correlation functions, as well as the probability distribution of the Imry-Ma domain size.Comment: 14 pages, latex fil

    Sliding Phases in XY-Models, Crystals, and Cationic Lipid-DNA Complexes

    Full text link
    We predict the existence of a totally new class of phases in weakly coupled, three-dimensional stacks of two-dimensional (2D) XY-models. These ``sliding phases'' behave essentially like decoupled, independent 2D XY-models with precisely zero free energy cost associated with rotating spins in one layer relative to those in neighboring layers. As a result, the two-point spin correlation function decays algebraically with in-plane separation. Our results, which contradict past studies because we include higher-gradient couplings between layers, also apply to crystals and may explain recently observed behavior in cationic lipid-DNA complexes.Comment: 4 pages of double column text in REVTEX format and 1 postscript figur

    Kinetic Roughening in Surfaces of Crystals Growing on Disordered Substrates

    Full text link
    Substrate disorder effects on the scaling properties of growing crystalline surfaces in solidification or epitaxial deposition processes are investigated. Within the harmonic approach there is a phase transition into a low-temperature (low-noise) superrough phase with a continuously varying dynamic exponent z>2 and a non-linear response. In the presence of the KPZ nonlinearity the disorder causes the lattice efects to decay on large scales with an intermediate crossover behavior. The mobility of the rough surface hes a complex dependence on the temperature and the other physical parameters.Comment: 13 pages, 2 figures (not included). Submitted to Phys. Rev. Letts. Use Latex twic

    Nonlinear Elasticity of the Sliding Columnar Phase

    Full text link
    The sliding columnar phase is a new liquid-crystalline phase of matter composed of two-dimensional smectic lattices stacked one on top of the other. This phase is characterized by strong orientational but weak positional correlations between lattices in neighboring layers and a vanishing shear modulus for sliding lattices relative to each other. A simplified elasticity theory of the phase only allows intralayer fluctuations of the columns and has three important elastic constants: the compression, rotation, and bending moduli, BB, KyK_y, and KK. The rotationally invariant theory contains anharmonic terms that lead to long wavelength renormalizations of the elastic constants similar to the Grinstein-Pelcovits renormalization of the elastic constants in smectic liquid crystals. We calculate these renormalizations at the critical dimension d=3d=3 and find that Ky(q)K1/2(q)B1/3(q)(ln(1/q))1/4K_y(q) \sim K^{1/2}(q) \sim B^{-1/3}(q) \sim (\ln(1/q))^{1/4}, where qq is a wavenumber. The behavior of BB, KyK_y, and KK in a model that includes fluctuations perpendicular to the layers is identical to that of the simple model with rigid layers. We use dimensional regularization rather than a hard-cutoff renormalization scheme because ambiguities arise in the one-loop integrals with a finite cutoff.Comment: This file contains 18 pages of double column text in REVTEX format and 6 postscript figure

    Iterated Moire Maps and Braiding of Chiral Polymer Crystals

    Full text link
    In the hexagonal columnar phase of chiral polymers a bias towards cholesteric twist competes with braiding along an average direction. When the chirality is strong, screw dislocations proliferate, leading to either a tilt grain boundary phase or a new "moire state" with twisted bond order. Polymer trajectories in the plane perpendicular to their average direction are described by iterated moire maps of remarkable complexity.Comment: 10 pages (plain tex) 3 figures uufiled and appende
    corecore