4 research outputs found

    Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis

    Get PDF
    Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not. © The Author(s) 2017

    Progress and biotechnological prospects in fish transgenesis

    No full text
    The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements. © 201

    Efficient and safe gene transfection in fish spermatogonial stem cells using nanomaterials

    No full text
    Multiwalled carbon nanotubes (MWCNTs), nanographene oxide (NGO), and gold nanorods (NRs) can be functionalized and complexed to DNA to promote efficient gene delivery to Nile tilapia spermatogonial stem cells inducing less cell death than electroporation and the commercial reagents tested. Therefore, nanomaterials can contribute to achieve fish transgenesis. © The Royal Society of Chemistry
    corecore