3 research outputs found
Investigating the Role of TGF-β Signaling Pathways in Human Corneal Endothelial Cell Primary Culture
Corneal endothelial diseases are the leading cause of corneal transplantation. The global shortage of donor corneas has resulted in the investigation of alternative methods, such as cell therapy and tissue-engineered endothelial keratoplasty (TEEK), using primary cultures of human corneal endothelial cells (hCECs). The main challenge is optimizing the hCEC culture process to increase the endothelial cell density (ECD) and overall yield while preventing endothelial–mesenchymal transition (EndMT). Fetal bovine serum (FBS) is necessary for hCEC expansion but contains TGF-βs, which have been shown to be detrimental to hCECs. Therefore, we investigated various TGF-β signaling pathways using inhibitors to improve hCEC culture. Initially, we confirmed that TGF-β1, 2, and 3 induced EndMT on confluent hCECs without FBS. Using this TGF-β-induced EndMT model, we validated NCAM as a reliable biomarker to assess EndMT. We then demonstrated that, in a culture medium containing 8% FBS for hCEC expansion, TGF-β1 and 3, but not 2, significantly reduced the ECD and caused EndMT. TGF-β receptor inhibition had an anti-EndMT effect. Inhibition of the ROCK pathway, notably that of the P38 MAPK pathway, increased the ECD, while inhibition of the ERK pathway decreased the ECD. In conclusion, the presence of TGF-β1 and 3 in 8% FBS leads to a reduction in ECD and induces EndMT. The use of SB431542 or LY2109761 may prevent EndMT, while Y27632 or Ripasudil, and SB203580 or SB202190, can increase the ECD
Corneal epithelium in keratoconus underexpresses active NRF2 and a subset of oxidative stress-related genes
Keratoconus (KC) is a multifactorial progressive ectatic disorder characterized by local thinning of the cornea, leading to decreased visual acuity due to irregular astigmatism and opacities. Despite the evolution of advanced imaging methods, the exact etiology of KC remains unknown. Our aim was to investigate the involvement of corneal epithelium in the pathophysiology of the disease. Corneal epithelial samples were collected from 23 controls and from 2 cohorts of patients with KC: 22 undergoing corneal crosslinking (early KC) and 6 patients before penetrating keratoplasty (advanced KC). The expression of genes involved in the epidermal terminal differentiation program and of the oxidative stress pathway was assessed by real time PCR analysis. Presence of some of the differentially expressed transcripts was confirmed at protein level using immunofluorescence on controls and advanced KC additional corneal samples. We found statistically significant under-expression in early KC samples of some genes known to be involved in the mechanical resistance of the epidermis ( KRT 16, KRT14 , SPRR1A , SPRR2A , SPRR3 , TGM1 and TGM5 ) and in oxidative stress pathways ( NRF2 , HMOX1 and HMOX2 ), as compared to controls. In advanced KC samples, expression of SPRR2A and HMOX1 was reduced. Decreased expression of keratin (KRT)16 and KRT14 proteins was observed. Moreover, differential localization was noted for involucrin, another protein involved in the epidermis mechanical properties. Finally, we observed an immunofluorescence staining for the active form of NRF2 in control epithelia that was reduced in KC epithelia. These results suggest a defect in the mechanical resistance and the oxidative stress defense possibly mediated via the NRF2 pathway in the corneal keratoconic epithelium