83 research outputs found
The 2CNF Boolean Formula Satisfiability Problem and the Linear Space Hypothesis
We aim at investigating the solvability/insolvability of nondeterministic
logarithmic-space (NL) decision, search, and optimization problems
parameterized by size parameters using simultaneously polynomial time and
sub-linear space on multi-tape deterministic Turing machines. We are
particularly focused on a special NL-complete problem, 2SAT---the 2CNF Boolean
formula satisfiability problem---parameterized by the number of Boolean
variables. It is shown that 2SAT with variables and clauses can be
solved simultaneously polynomial time and space for an absolute constant . This fact inspires us to
propose a new, practical working hypothesis, called the linear space hypothesis
(LSH), which states that 2SAT---a restricted variant of 2SAT in which each
variable of a given 2CNF formula appears at most 3 times in the form of
literals---cannot be solved simultaneously in polynomial time using strictly
"sub-linear" (i.e., for a certain constant
) space on all instances . An immediate consequence of
this working hypothesis is . Moreover, we use our
hypothesis as a plausible basis to lead to the insolvability of various NL
search problems as well as the nonapproximability of NL optimization problems.
For our investigation, since standard logarithmic-space reductions may no
longer preserve polynomial-time sub-linear-space complexity, we need to
introduce a new, practical notion of "short reduction." It turns out that,
parameterized with the number of variables, is
complete for a syntactically restricted version of NL, called Syntactic
NL, under such short reductions. This fact supports the legitimacy
of our working hypothesis.Comment: (A4, 10pt, 25 pages) This current article extends and corrects its
preliminary report in the Proc. of the 42nd International Symposium on
Mathematical Foundations of Computer Science (MFCS 2017), August 21-25, 2017,
Aalborg, Denmark, Leibniz International Proceedings in Informatics (LIPIcs),
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 2017, vol. 83, pp.
62:1-62:14, 201
Approximation Complexity of Complex-Weighted Degree-Two Counting Constraint Satisfaction Problems
Constraint satisfaction problems have been studied in numerous fields with
practical and theoretical interests. In recent years, major breakthroughs have
been made in a study of counting constraint satisfaction problems (or #CSPs).
In particular, a computational complexity classification of bounded-degree
#CSPs has been discovered for all degrees except for two, where the "degree" of
an input instance is the maximal number of times that each input variable
appears in a given set of constraints. Despite the efforts of recent studies,
however, a complexity classification of degree-2 #CSPs has eluded from our
understandings. This paper challenges this open problem and gives its partial
solution by applying two novel proof techniques--T_{2}-constructibility and
parametrized symmetrization--which are specifically designed to handle
"arbitrary" constraints under randomized approximation-preserving reductions.
We partition entire constraints into four sets and we classify the
approximation complexity of all degree-2 #CSPs whose constraints are drawn from
two of the four sets into two categories: problems computable in
polynomial-time or problems that are at least as hard as #SAT. Our proof
exploits a close relationship between complex-weighted degree-2 #CSPs and
Holant problems, which are a natural generalization of complex-weighted #CSPs.Comment: A4, 10pt, 23 pages. This is a complete version of the paper that
appeared in the Proceedings of the 17th Annual International Computing and
Combinatorics Conference (COCOON 2011), Lecture Notes in Computer Science,
vol.6842, pp.122-133, Dallas, Texas, USA, August 14-16, 201
- β¦