731 research outputs found

    Bose-Fermi Mixtures in One Dimension

    Full text link
    We analyze the phase stability and the response of a mixture of bosons and spin-polarized fermions in one dimension (1D). Unlike in 3D, phase separation happens for low fermion densities. The dynamics of the mixture at low energy is independent of the spin-statistics of the components, and zero-sound-like modes exist that are essentially undamped.Comment: 5 pages; 1 figur

    The mean energy, strength and width of triple giant dipole resonances

    Get PDF
    We investigate the mean energy, strength and width of the triple giant dipole resonance using sum rules.Comment: 12 page

    Non-equilibrium Plasmons in a Quantum Wire Single Electron Transistor

    Full text link
    We analyze a single electron transistor composed of two semi-infinite one dimensional quantum wires and a relatively short segment between them. We describe each wire section by a Luttinger model, and treat tunneling events in the sequential approximation when the system's dynamics can be described by a master equation. We show that the steady state occupation probabilities in the strongly interacting regime depend only on the energies of the states and follow a universal form that depends on the source-drain voltage and the interaction strength.Comment: 4 pages, 3 figures. To appear in the Phys. Rev. Let

    Two dimensional anisotropic non Fermi-liquid phase of coupled Luttinger liquids

    Full text link
    We show using bosonization techniques, that strong forward scattering interactions between one dimensional spinless Luttinger liquids (LL) can stabilize a phase where charge-density wave, superconducting and transverse single particle hopping perturbations are irrelevant. This new phase retains its LL like properties in the directions of the chains, but with relations between exponents modified by the transverse interactions, whereas, it is a perfect insulator in the transverse direction. The mechanism that stabilizes this phase are strong transverse charge density wave fluctuations at incommensurate wavevector, which frustrates crystal formation by preventing lock-in of the in-chain density waves.Comment: (4 pages, 2 figures

    A Solvable Model of Interacting Fermions in Two Dimensions

    Get PDF
    We introduce and study an exactly solvable model of several species of fermions in which particles interact pairwise through a mutual magnetic field; the interaction operates only between particles belonging to different species. After an unitary transformation, the model reduces to one in which each particle sees a magnetic field which depends on the total numbers of particles of all the other species; this may be viewed as the mean-field model for a class of anyonic theories. Our model is invariant under charge conjugation C and the product PT (parity and time reversal). For the special case of two species, we examine various properties of this system, such as the Hall conductivity, the wave function overlap arising from the transfer of one particle from one species to another, and the one-particle off-diagonal density matrix. Our model is a generalization of a recently introduced solvable model in one dimension.Comment: Revtex, 7 page

    Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension

    Full text link
    The single electron Green's function of the one-dimensional Tomonaga-Luttinger model in the presence of open boundaries is calculated with bosonization methods. We show that the critical exponents of the local spectral density and of the momentum distribution change in the presence of a boundary. The well understood universal bulk behavior always crosses over to a boundary dominated regime for small energies or small momenta. We show this crossover explicitly for the large-U Hubbard model in the low-temperature limit. Consequences for photoemission experiments are discussed.Comment: revised and reformatted paper to appear in Phys. Rev. Lett. (Feb. 1996). 5 pages (revtex) and 3 embedded figures (macro included). A complete postscript file is available from http://FY.CHALMERS.SE/~eggert/luttinger.ps or by request from [email protected]

    Fluctuation theorem for constrained equilibrium systems

    Full text link
    We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as iso-kinetic and Nos\'e-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Nevertheless finite-time averages of the phase-space contraction rate have non-trivial fluctuations which we show satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation theorem for non-equilibrium stationary states, and appropriate to constrained equilibrium states. Moreover we show these fluctuations are distributed according to a Gaussian curve for long-enough times. Three different systems are considered here, namely (i) a fluid composed of particles interacting with Lennard-Jones potentials; (ii) a harmonic oscillator with Nos\'e-Hoover thermostatting; (iii) a simple hyperbolic two-dimensional map.Comment: To appear in Phys. Rev.

    Pressure dependence of the single particle excitation in the charge-density-wave CeTe3_3 system

    Full text link
    We present new data on the pressure dependence at 300 K of the optical reflectivity of CeTe3_3, which undergoes a charge-density-wave (CDW) phase transition well above room temperature. The collected data cover an unprecedented broad spectral range from the infrared up to the ultraviolet, which allows a robust determination of the gap as well as of the fraction of the Fermi surface affected by the formation of the CDW condensate. Upon compressing the lattice there is a progressive closing of the gap inducing a transfer of spectral weight from the gap feature into the Drude component. At frequencies above the CDW gap we also identify a power-law behavior, consistent with findings along the RRTe3_3 series (i.e., chemical pressure) and suggestive of a Tomonaga-Luttinger liquid scenario at high energy scales. This newest set of data is placed in the context of our previous investigations of this class of materials and allows us to revisit important concepts for the physics of CDW state in layered-like two-dimensional systems

    Quantum Scattering in Quasi-1D Cylindrical Confinement

    Full text link
    Finite size effects alter not only the energy levels of small systems, but can also lead to new effective interactions within these systems. Here the problem of low energy quantum scattering by a spherically symmetric short range potential in the presence of a general cylindrical confinement is investigated. A Green's function formalism is developed which accounts for the full 3D nature of the scattering potential by incorporating all phase-shifts and their couplings. This quasi-1D geometry gives rise to scattering resonances and weakly localized states, whose binding energies and wavefunctions can be systematically calculated. Possible applications include e.g. impurity scattering in ballistic quasi-1D quantum wires in mesoscopic systems and in atomic matter wave guides. In the particular case of parabolic confinement, the present formalism can also be applied to pair collision processes such as two-body interactions. Weakly bound pairs and quasi-molecules induced by the confinement and having zero or higher orbital angular momentum can be predicted, such as p- and d-wave pairings.Comment: Extended version of quant-ph/050319

    Local Fields without Restrictions on the Spectrum of 4-Momentum Operator and Relativistic Lindblad Equation

    Full text link
    Quantum theory of Lorentz invariant local scalar fields without restrictions on 4-momentum spectrum is considered. The mass spectrum may be both discrete and continues and the square of mass as well as the energy may be positive or negative. Such fields can exist as part of a hidden matter in the Universe if they interact with ordinary fields very weakly. Generalization of Kallen-Lehmann representation for propagators of these fields is found. The considered generalized fields may violate CPT- invariance. Restrictions on mass-spectrum of CPT-violating fields are found. Local fields that annihilate vacuum state and violate CPT- invariance are constructed in this scope. Correct local relativistic generalization of Lindblad equation for density matrix is written for such fields. This generalization is particulary needed to describe the evolution of quantum system and measurement process in a unique way. Difficulties arising when the field annihilating the vacuum interacts with ordinary fields are discussed.Comment: Latex 23 pages, sent to "Foundations of Physics
    • …
    corecore