784 research outputs found

    Sense of Self in Baby Chimpanzees

    Get PDF
    Philippe Rochat and his colleague tentatively proposed that young infants' propensity to engage in self-perception and systematic exploration of the perceptual consequences of their own action plays and is probably at the origin of an early sense of self: the ecological self. Rochat and Hespos (1997) reported that neonates discriminate between external and self-stimulation. Neonate tended to display significantly more rooting responses (i.e., head turn towards the stimulation with mouth open and tonguing) following external compared to self-stimulation. Rochat et al. (1998) also reported that 2-month-olds showed clear sign of modulation of their oral activity on the pacifier as a function of analog versus non-analog condition. Rochat and his colleague concluded that these observations are interpreted as evidence of self-exploration and the emergence of a sense of self-agency by 2-month-olds. We tried to replicate these findings in infant chimpanzees. We observed rooting responses of three baby chimpanzees in two condition, self-stimulation and external stimulation. In external stimulation condition, the index finger of the experimenter or small stick touched one of the infant's cheeks. In self-stimulation condition, the experimenter took infant's hand and touched his or her cheek with their fingers. In Rochat and Hespos, they recorded and analyzed several measures such as state, head movement, mouth activity and so on. How ever, we analyzed only mouth activities tentatively. We found infant chimpanzees tended to show more rooting responses following external stimulation compared to self-stimulation as well as human infants. We also carried out sucking experiment with two baby chimpanzees. The experimenter held the pacifier and put the artificial nipple into the infant's mouth. A session started when the infant take the nipple inside the his or her mouth. Auditory stimulus, which was a complex tone comprised of six harmonics with equal intensity, was given to the chimpanzee according to the test condition during their sucking. There were four test conditions and each condition consisted with three types of feedback as follows: 1) silent baseline, contingent, and steady, 2) contingent baseline, 1-sec delay, and 3-sec delay, 3) contingent baseline, 6-sec delay, and 12-sec delay, 4) contingent baseline, 1/2 efficiency, and 1/4 efficiency. In test 1, one infant chimpanzee showed decrease of the minimum pressure of sucking in the contingent condition. In test 2, one subject showed shorter intervals of sucking in 3-sec delay condition. This seems to be similar to human infant's. We may be able to postulate ecological self in baby chimpanzees according to the self-exploration. In test 3 and 4, we did not obtain any effects of stimulus conditions. Results of these studies. These studies were conducted as the parts of the chimpanzee development project in Primate Research Institute, Kyoto University, organized by Professor Tetsuro Matsuzawa

    Tomonaga-Luttinger liquid correlations and Fabry-Perot interference in conductance and finite-frequency shot noise in a single-walled carbon nanotube

    Full text link
    We present a detailed theoretical investigation of transport through a single-walled carbon nanotube (SWNT) in good contact to metal leads where weak backscattering at the interfaces between SWNT and source and drain reservoirs gives rise to electronic Fabry-Perot (FP) oscillations in conductance and shot noise. We include the electron-electron interaction and the finite length of the SWNT within the inhomogeneous Tomonaga-Luttinger liquid (TLL) model and treat the non-equilibrium effects due to an applied bias voltage within the Keldysh approach. In low-frequency transport properties, the TLL effect is apparent mainly via power-law characteristics as a function of bias voltage or temperature at energy scales above the finite level spacing of the SWNT. The FP-frequency is dominated by the non-interacting spin mode velocity due to two degenerate subbands rather than the interacting charge velocity. At higher frequencies, the excess noise is shown to be capable of resolving the splintering of the transported electrons arising from the mismatch of the TLL-parameter at the interface between metal reservoirs and SWNT. This dynamics leads to a periodic shot noise suppression as a function of frequency and with a period that is determined solely by the charge velocity. At large bias voltages, these oscillations are dominant over the ordinary FP-oscillations caused by two weak backscatterers. This makes shot noise an invaluable tool to distinguish the two mode velocities in the SWNT.Comment: 20 pages, 9 figure

    The mean energy, strength and width of triple giant dipole resonances

    Get PDF
    We investigate the mean energy, strength and width of the triple giant dipole resonance using sum rules.Comment: 12 page

    Correlation effects in quasi one dimensional electron wires

    Full text link
    We explore the role of electron correlation in quasi one dimensional quantum wires as the range of the interaction potential is changed and their thickness is varied by performing exact quantum Monte Carlo simulations at various electronic densities. In the case of unscreened interactions with a long range 1/x tail there is a crossover from a liquid to a quasi Wigner crystal state as the density decreases. When this interaction is screened, quasi long range order is prevented from forming, although a significant correlation with 4 k_F periodicity is still present at low densities. At even lower electron concentration, exchange is suppressed and the spin-dependent interactions become negligible, making the electrons behave like spinless fermions. We show that this behavior is shared by the long range and screened interactions by studying the spin and charge excitations of the system in both cases. Finally, we study the effect of electron correlations in the double quantum wire experiment [Steinberg et al., Phys. Rev. B 77, 113307 (2006)], by introducing an accurate model for the screening in the experiment and explicitly including the finite length of the system in our simulations. We find that decreasing the electron density drives the system from a liquid to a state with quite strong 4 k_F correlations. This crossover takes place around 20μm−120 \mu m^{-1}, the density where the electron localization occurs in the experiment. The charge and spin velocities are also in remarkable agreement with the experimental findings in the proximity of the crossover. We argue that correlation effects play an important role at the onset of the localization transition.Comment: minor improvements, 13 pages, 12 figure

    Bose-Fermi Mixtures in One Dimension

    Full text link
    We analyze the phase stability and the response of a mixture of bosons and spin-polarized fermions in one dimension (1D). Unlike in 3D, phase separation happens for low fermion densities. The dynamics of the mixture at low energy is independent of the spin-statistics of the components, and zero-sound-like modes exist that are essentially undamped.Comment: 5 pages; 1 figur

    Correlated sequential tunneling through a double barrier for interacting one-dimensional electrons

    Full text link
    The problem of resonant tunneling through a quantum dot weakly coupled to spinless Tomonaga-Luttinger liquids has been studied. We compute the linear conductance due to sequential tunneling processes upon employing a master equation approach. Besides the previously used lowest-order golden rule rates describing uncorrelated sequential tunneling (UST) processes, we systematically include higher-order correlated sequential tunneling (CST) diagrams within the standard Weisskopf-Wigner approximation. We provide estimates for the parameter regions where CST effects can be important. Focusing mainly on the temperature dependence of the peak conductance, we discuss the relation of these findings to previous theoretical and experimental results.Comment: replaced with the published versio

    Signatures of Strong Correlations in One-Dimensional Ultra-Cold Atomic Fermi Gases

    Full text link
    Recent success in manipulating ultra-cold atomic systems allows to probe different strongly correlated regimes in one-dimension. Regimes such as the (spin-coherent) Luttinger liquid and the spin-incoherent Luttinger liquid can be realized by tuning the inter-atomic interaction strength and trap parameters. We identify the noise correlations of density fluctuations as a robust observable (uniquely suitable in the context of trapped atomic gases) to discriminate between these two regimes. Finally, we address the prospects to realize and probe these phenomena experimentally using optical lattices.Comment: 4 pages, 2 figure

    RPAE versus RPA for the Tomonaga model with quadratic energy dispersion

    Full text link
    Recently the damping of the collective charge (and spin) modes of interacting fermions in one spatial dimension was studied. It results from the nonlinear correction to the energy dispersion in the vicinity of the Fermi points. To investigate the damping one has to replace the random phase approximation (RPA) bare bubble by a sum of more complicated diagrams. It is shown here that a better starting point than the bare RPA is to use the (conserving) linearized time dependent Hartree-Fock equations, i.e. to perform a random phase approximation (with) exchange (RPAE) calculation. It is shown that the RPAE equation can be solved analytically for the special form of the two-body interaction often used in the Luttinger liquid framework. While (bare) RPA and RPAE agree for the case of a strictly linear disperson there are qualitative differences for the case of the usual nonrelativistic quadratic dispersion.Comment: 6 pages, 3 figures, misprints corrected; to appear in PRB7

    First-principles study of the atomic and electronic structure of the Si(111)-(5x2-Au surface reconstruction

    Full text link
    We present a systematic study of the atomic and electronic structure of the Si(111)-(5x2)-Au reconstruction using first-principles electronic structure calculations based on the density functional theory. We analyze the structural models proposed by Marks and Plass [Phys. Rev. Lett.75, 2172 (1995)], those proposed recently by Erwin [Phys. Rev. Lett.91, 206101 (2003)], and a completely new structure that was found during our structural optimizations. We study in detail the energetics and the structural and electronic properties of the different models. For the two most stable models, we also calculate the change in the surface energy as a function of the content of silicon adatoms for a realistic range of concentrations. Our new model is the energetically most favorable in the range of low adatom concentrations, while Erwin's "5x2" model becomes favorable for larger adatom concentrations. The crossing between the surface energies of both structures is found close to 1/2 adatoms per 5x2 unit cell, i.e. near the maximum adatom coverage observed in the experiments. Both models, the new structure and Erwin's "5x2" model, seem to provide a good description of many of the available experimental data, particularly of the angle-resolved photoemission measurements

    Equivalence of Local and Separable Realizations of the Discontinuity-Inducing Contact Interaction and Its Perturbative Renormalizability

    Full text link
    We prove that the separable and local approximations of the discontinuity-inducing zero-range interaction in one-dimensional quantum mechanics are equivalent. We further show that the interaction allows the perturbative treatment through the coupling renormalization. Keywords: one-dimensional system, generalized contact interaction, renormalization, perturbative expansion. PACS Nos: 3.65.-w, 11.10.Gh, 31.15.MdComment: ReVTeX 7pgs, doubl column, no figure, See also the website http://www.mech.kochi-tech.ac.jp/cheon
    • …
    corecore