2 research outputs found

    Structure and Mechanical Properties of Polybutadiene Thin Films Bound to Surface-Modified Carbon Interface

    No full text
    The structure and mechanical properties of polybutadiene (PB) films on bare and surface-modified carbon films were examined. There was an interfacial layer of PB near the carbon layer whose density was higher (lower) than that of the bulk material on the hydrophobic (hydrophilic) carbon surface. To glean information about the structure and mechanical properties of PB at the carbon interface, a residual layer (RL) adhering to the carbon surface, which was considered to be a model of “bound rubber layer”, was obtained by rinsing the PB film with toluene. The density and thickness of the RLs were identical to those of the interfacial layer of the PB film. In accordance with the change in the density, normal stress of the RLs evaluated by atomic force microscopy was also dependent on the surface free energy: the RLs on the hydrophobic carbon were hard like glass, whereas those on the hydrophilic carbon were soft like rubber. Similarly, the wear test revealed that the RLs on the hydrophilic carbon could be peeled off by scratching under a certain stress, whereas the RLs on the hydrophobic carbons were resistant to scratching

    Nanostructures and Dynamics of Macromolecules Bound to Attractive Filler Surfaces

    No full text
    We report in situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called “bound polymer layer (BPL)”) in a good solvent. The BPL on the CB fillers was extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. The results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ≈ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called “breathing mode” and is generalized with the thickness of the swollen BPL
    corecore