47 research outputs found

    Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides

    Get PDF
    Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1gA_{1g}) symmetry (s±s^\pm). In particular we focus on the role of the hole pocket at the (π,π)(\pi,\pi) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {\it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s±s^\pm state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap

    Detection, epitope-mapping and function of anti-Fas autoantibody in patients with silicosis

    No full text
    Dysregulation of apoptosis through the Fas–Fas ligand pathway is associated with the onset of autoimmune disease. Since autoantibodies directed against unknown antigens are present in the sera of these patients, sera samples were examined for the presence of autoantibodies directed against the Fas molecule. Using Western blotting and a ProteinChip analysis, autoantibodies against Fas were detected in patients with silicosis, systemic lupus erythematosus (SLE) and systemic sclerosis (SSc), and weakly detected in healthy individuals. Using epitope mapping employing 12-amino-acid polypeptides with the SPOTs system, a minimum of four epitopes and a maximum of 10 epitopes were found. Several amino acid residues involved in binding FasL, such as C66, R87, L90, E93 and H126, were presented within the epitopes. Serum containing a large amount of anti-Fas autoantibody from silicosis patients inhibited the growth of a Fas-expressing human cell line, but did not inhibit the growth of a low Fas-expresser nor a Fas-expresser in which the Fas gene had been silenced by small interference RNA. All epitopes in the intracellular region of Fas were located in the death domain. The possible roles of anti-Fas autoantibody detected in healthy volunteers and patients with silicosis or autoimmune diseases are discussed here
    corecore