150 research outputs found

    ALMA Millimeter/Submillimeter Sources among Spitzer SMUVS Galaxies at z > 2 in the COSMOS Field

    Get PDF
    Submillimeter observations reveal the star formation activity obscured by dust in the young Universe. It still remains unclear how galaxies detected at submillimeter wavelengths are related to ultraviolet/optical-selected galaxies in terms of their observed quantities, physical properties, and evolutionary stages. Deep near- and mid-infrared observational data are crucial to characterize the stellar properties of galaxies detected with submillimeter emission. In this study, we make use of a galaxy catalog from the Spitzer Matching survey of the UltraVISTA ultra-deep Stripes. By crossmatching with a submillimeter source catalog constructed with archival data of the Atacama Large Millimeter/submillimeter Array (ALMA), we search for galaxies at z &gt; 2 with a submillimeter detection in our galaxy catalog. We find that the ALMA-detected galaxies at z &gt; 2 are systematically massive and have redder K s -[4.5] colors than the nondetected galaxies. The redder colors are consistent with the larger dust reddening values of the ALMA-detected galaxies obtained from spectral energy distribution (SED) fitting. We also find that the ALMA-detected galaxies tend to have brighter 4.5 μm magnitudes. This may suggest that they tend to have smaller mass-to-light ratios and thus to be younger than star-forming galaxies fainter at submillimeter wavelengths with similar stellar masses. We identify starburst galaxies with high specific star formation rates among both ALMA-detected and nondetected SMUVS sources. Irrespective of their brightness at submillimeter wavelengths, these populations have similar dust reddening values, which may suggest a variety of dust SED shapes among the starburst galaxies at z &gt; 2.</p

    ALMA sub-/millimeter sources among SpitzerSpitzer SMUVS galaxies at z>2z>2 in the COSMOS field

    Full text link
    Sub-millimeter observations reveal the star-formation activity obscured by dust in the young Universe. It still remains unclear how galaxies detected at sub-millimeter wavelengths are related to ultraviolet/optical-selected galaxies in terms of their observed quantities, physical properties, and evolutionary stages. Deep near- and mid-infrared observational data are crucial to characterize the stellar properties of galaxies detected with sub-millimeter emission. In this study, we make use of a galaxy catalog from the SpitzerSpitzer Matching Survey of the UltraVISTA ultra-deep Stripes. By cross-matching with a sub-millimeter source catalog constructed with the archival data of the Atacama Large Millimeter/submillimeter Array (ALMA), we search for galaxies at z>z> 2 with a sub-millimeter detection in our galaxy catalog. We find that the ALMA-detected galaxies at z>z> 2 are systematically massive and have redder KsK_s-[4.5] colors than the non-detected galaxies. The redder colors are consistent with the larger dust reddening values of the ALMA-detected galaxies obtained from SED fitting. We also find that the ALMA-detected galaxies tend to have brighter 4.5 μ\mum magnitudes. This may suggest that they tend to have smaller mass-to-light ratios, and thus, to be younger than star-forming galaxies fainter at sub-millimeter wavelengths with similar stellar masses. We identify starburst galaxies with high specific star-formation rates among both ALMA-detected and non-detected SMUVS sources. Irrespective of their brightness at sub-millimeter wavelengths, these populations have similar dust reddening values, which may suggest a variety of dust SED shapes among the starburst galaxies at z>2z>2.Comment: 14 pages, 7 figures, 2 tables, Accepted for publication in Ap

    ALMA Millimeter/Submillimeter Sources among Spitzer SMUVS Galaxies at z &gt; 2 in the COSMOS Field

    Get PDF
    Submillimeter observations reveal the star formation activity obscured by dust in the young Universe. It still remains unclear how galaxies detected at submillimeter wavelengths are related to ultraviolet/optical-selected galaxies in terms of their observed quantities, physical properties, and evolutionary stages. Deep near- and mid-infrared observational data are crucial to characterize the stellar properties of galaxies detected with submillimeter emission. In this study, we make use of a galaxy catalog from the Spitzer Matching survey of the UltraVISTA ultra-deep Stripes. By crossmatching with a submillimeter source catalog constructed with archival data of the Atacama Large Millimeter/submillimeter Array (ALMA), we search for galaxies at z &gt; 2 with a submillimeter detection in our galaxy catalog. We find that the ALMA-detected galaxies at z &gt; 2 are systematically massive and have redder K s -[4.5] colors than the nondetected galaxies. The redder colors are consistent with the larger dust reddening values of the ALMA-detected galaxies obtained from spectral energy distribution (SED) fitting. We also find that the ALMA-detected galaxies tend to have brighter 4.5 μm magnitudes. This may suggest that they tend to have smaller mass-to-light ratios and thus to be younger than star-forming galaxies fainter at submillimeter wavelengths with similar stellar masses. We identify starburst galaxies with high specific star formation rates among both ALMA-detected and nondetected SMUVS sources. Irrespective of their brightness at submillimeter wavelengths, these populations have similar dust reddening values, which may suggest a variety of dust SED shapes among the starburst galaxies at z &gt; 2.</p

    ALMA Millimeter/Submillimeter Sources among Spitzer SMUVS Galaxies at z &gt; 2 in the COSMOS Field

    Get PDF
    Submillimeter observations reveal the star formation activity obscured by dust in the young Universe. It still remains unclear how galaxies detected at submillimeter wavelengths are related to ultraviolet/optical-selected galaxies in terms of their observed quantities, physical properties, and evolutionary stages. Deep near- and mid-infrared observational data are crucial to characterize the stellar properties of galaxies detected with submillimeter emission. In this study, we make use of a galaxy catalog from the Spitzer Matching survey of the UltraVISTA ultra-deep Stripes. By crossmatching with a submillimeter source catalog constructed with archival data of the Atacama Large Millimeter/submillimeter Array (ALMA), we search for galaxies at z &gt; 2 with a submillimeter detection in our galaxy catalog. We find that the ALMA-detected galaxies at z &gt; 2 are systematically massive and have redder K s -[4.5] colors than the nondetected galaxies. The redder colors are consistent with the larger dust reddening values of the ALMA-detected galaxies obtained from spectral energy distribution (SED) fitting. We also find that the ALMA-detected galaxies tend to have brighter 4.5 μm magnitudes. This may suggest that they tend to have smaller mass-to-light ratios and thus to be younger than star-forming galaxies fainter at submillimeter wavelengths with similar stellar masses. We identify starburst galaxies with high specific star formation rates among both ALMA-detected and nondetected SMUVS sources. Irrespective of their brightness at submillimeter wavelengths, these populations have similar dust reddening values, which may suggest a variety of dust SED shapes among the starburst galaxies at z &gt; 2.</p

    ALMA Millimeter/Submillimeter Sources among Spitzer SMUVS Galaxies at z &gt; 2 in the COSMOS Field

    Get PDF
    Submillimeter observations reveal the star formation activity obscured by dust in the young Universe. It still remains unclear how galaxies detected at submillimeter wavelengths are related to ultraviolet/optical-selected galaxies in terms of their observed quantities, physical properties, and evolutionary stages. Deep near- and mid-infrared observational data are crucial to characterize the stellar properties of galaxies detected with submillimeter emission. In this study, we make use of a galaxy catalog from the Spitzer Matching survey of the UltraVISTA ultra-deep Stripes. By crossmatching with a submillimeter source catalog constructed with archival data of the Atacama Large Millimeter/submillimeter Array (ALMA), we search for galaxies at z &gt; 2 with a submillimeter detection in our galaxy catalog. We find that the ALMA-detected galaxies at z &gt; 2 are systematically massive and have redder K s -[4.5] colors than the nondetected galaxies. The redder colors are consistent with the larger dust reddening values of the ALMA-detected galaxies obtained from spectral energy distribution (SED) fitting. We also find that the ALMA-detected galaxies tend to have brighter 4.5 μm magnitudes. This may suggest that they tend to have smaller mass-to-light ratios and thus to be younger than star-forming galaxies fainter at submillimeter wavelengths with similar stellar masses. We identify starburst galaxies with high specific star formation rates among both ALMA-detected and nondetected SMUVS sources. Irrespective of their brightness at submillimeter wavelengths, these populations have similar dust reddening values, which may suggest a variety of dust SED shapes among the starburst galaxies at z &gt; 2.</p

    Enhanced Star Formation of Less Massive Galaxies in a Proto-Cluster at z=2.5

    Full text link
    We investigate a correlation between star-formation rate (SFR) and stellar mass for Halpha emission line galaxies (HAEs) in one of the richest proto-clusters ever known at z~2.5, USS 1558-003 proto-cluster. This study is based on a 9.7-hour narrow-band imaging data with MOIRCS on the Subaru telescope. We are able to construct a sample, in combination with additional H-band data taken with WFC3 on Hubble Space Telescope (HST), of 100 HAEs reaching the dust-corrected SFRs down to 3 Msun/yr and the stellar masses down to 108.010^{8.0} Msun. We find that while the star-forming galaxies with >109.310^{9.3} Msun are located on the universal SFR-mass main sequence irrespective of the environment, less massive star-forming galaxies with <109.310^{9.3} Msun show a significant upward scatter from the main sequence in this proto-cluster. This suggests that some less massive galaxies are in a starburst phase, although we do not know yet if this is due to environmental effects.Comment: 5 pages, 3 figures, 1 table, accepted for publication in the ApJ Letter

    Evolutionary phases of gas-rich galaxies in a galaxy cluster at z=1.46

    Full text link
    We report a survey of molecular gas in galaxies in the XMMXCS J2215.9-1738 cluster at z=1.46z=1.46. We have detected emission lines from 17 galaxies within a radius of R200R_{200} from the cluster center, in Band 3 data of the Atacama Large Millimeter/submillimeter Array (ALMA) with a coverage of 93 -- 95 GHz in frequency and 2.33 arcmin2^2 in spatial direction. The lines are all identified as CO JJ=2--1 emission lines from cluster members at z∼1.46z\sim1.46 by their redshifts and the colors of their optical and near-infrared (NIR) counterparts. The line luminosities reach down to LCO(2−1)′=4.5×109L'_{\rm CO(2-1)}=4.5\times10^{9} K km s−1^{-1} pc2^2. The spatial distribution of galaxies with a detection of CO(2--1) suggests that they disappear from the very center of the cluster. The phase-space diagram showing relative velocity versus cluster-centric distance indicates that the gas-rich galaxies have entered the cluster more recently than the gas-poor star-forming galaxies and passive galaxies located in the virialized region of this cluster. The results imply that the galaxies have experienced ram-pressure stripping and/or strangulation during the course of infall towards the cluster center and then the molecular gas in the galaxies at the cluster center is depleted by star formation.Comment: 7 pages, 4 figures, 1 table, accepted for publication in the ApJ Letter
    • …
    corecore