7 research outputs found
Expression of inducible nitric oxide synthase in macrophages inversely correlates with parasitism of lymphoid tissues in dogs with visceral leishmaniasis
Abstract\ud
\ud
Background\ud
There are only a few studies reporting the role of nitric oxide metabolites for controlling macrophage intracellular parasitism, and these are controversial. Therefore, the present study aimed to evaluate the expression of inducible nitric oxide synthase (iNOS) in the lymph nodes and spleen of dogs affected by visceral leishmaniasis through immunohistochemistry and to determine its correlation with tissue parasite burden and serum interferon (IFN)-γ levels. Twenty-eight dogs were selected and assigned to one of two groups, symptomatic (n = 18) and asymptomatic (n = 10), according to clinical status and laboratory evaluation. A negative control group (n = 6) from a non-endemic region for visceral leishmaniasis was included as well.\ud
\ud
\ud
Results\ud
Parasite density (amastigotes/mm2) was similar between clinical groups in the lymph nodes (P = 0.2401) and spleen (P = 0.8869). The density of iNOS+ cells was higher in infected dogs compared to controls (P < 0.05), without a significant difference in lymph node (P = 0.3257) and spleen (P = 0.5940) densities between symptomatic and asymptomatic dogs. A positive correlation was found between the number of iNOS+ cells in lymph nodes and interferon-γ levels (r = 0.3776; P = 0.0303), and there was a negative correlation between parasites and iNOS+ cell densities both in lymph nodes (r = −0.5341; P = 0.0034) and spleen (r = −0.4669; P = 0.0329).\ud
\ud
\ud
Conclusion\ud
The negative correlation observed between tissue parasitism and the expression of iNOS may be a reflection of NO acting on the control of parasites.CNP
The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection
In this study, the effect of phospholipase A2 (PLA2) derived from Crotalus durissus collilineatus was evaluated in vitro and in vivo on experimental cutaneous leishmaniasis. The promastigote and amastigote forms treated with PLA2 presented increased growth rate. In vivo studies showed that PLA2-treated Leishmania (Leishmania) amazonensis promastigotes increased the size of lesions in BALB/c mice, and histopathological analysis showed numerous necrotic regions presenting a higher density of polymorphonuclear, mononuclear, and amastigote cells. Additionally, infected macrophages treated with PLA2 were able to generate prostaglandin E2 (PGE2). Cytokine quantification showed that the supernatant from infected macrophages presented moderate and high amounts of IL-2 and IL-10, respectively. However, in PLA2-treated infected macrophages, suppression of IL-2 levels occurred, but not of IL-10 levels. Observation also revealed that both the supernatant and lysate of L. (L.) amazonensis promastigotes exhibited PLA2 activity, which, in the presence of dexamethasone, showed no reduction in their activities; while glucocorticoid maintained the ability of promastigote forms to infect macrophages, which presented values similar to controls. In conclusion, the results indicate that PLA2 may be a progression factor for cutaneous leishmaniasis, since the PLA2 effect suppressed IL-2 levels and generated PGE2, an inflammatory lipid mediator
Expression of inducible nitric oxide synthase in macrophages inversely correlates with parasitism of lymphoid tissues in dogs with visceral leishmaniasis
Background: There are only a few studies reporting the role of nitric oxide metabolites for controlling macrophage intracellular parasitism, and these are controversial. Therefore, the present study aimed to evaluate the expression of inducible nitric oxide synthase (iNOS) in the lymph nodes and spleen of dogs affected by visceral leishmaniasis through immunohistochemistry and to determine its correlation with tissue parasite burden and serum interferon (IFN)-gamma levels. Twenty-eight dogs were selected and assigned to one of two groups, symptomatic (n = 18) and asymptomatic (n = 10), according to clinical status and laboratory evaluation. A negative control group (n = 6) from a non-endemic region for visceral leishmaniasis was included as well.Results: Parasite density (amastigotes/mm(2)) was similar between clinical groups in the lymph nodes (P = 0.2401) and spleen (P = 0.8869). The density of iNOS(+) cells was higher in infected dogs compared to controls (P < 0.05), without a significant difference in lymph node (P = 0.3257) and spleen (P = 0.5940) densities between symptomatic and asymptomatic dogs. A positive correlation was found between the number of iNOS(+) cells in lymph nodes and interferon-gamma levels (r = 0.3776; P = 0.0303), and there was a negative correlation between parasites and iNOS+ cell densities both in lymph nodes (r = -0.5341; P = 0.0034) and spleen (r = -0.4669; P = 0.0329).Conclusion: The negative correlation observed between tissue parasitism and the expression of iNOS may be a reflection of NO acting on the control of parasites.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
Genome-Wide Association Study of Cell-Mediated Response in Dogs Naturally Infected by Leishmania infantum
A genome-wide association study (GWAS) could unravel the complexity of the cell-mediated immunity (CMI) to canine leishmaniasis (CanL). Therefore, we scanned 110,165 single-nucleotide polymorphisms (SNPs), aiming to identify chromosomal regions associated with the leishmanin skin test (LST), lymphocyte proliferation assay (LPA), and cytokine responses to further understand the role played by CMI in the outcome of natural Leishmania infantum infection in 189 dogs. Based on LST and LPA, four CMI profiles were identified (LST(−)/LPA(−), LST(+)/LPA(−), LST(−)/LPA(+), and LST(+)/LPA(+)), which were not associated with subclinically infected or diseased dogs. LST(+)/LPA(+) dogs showed increased interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) levels and mild parasitism in the lymph nodes, whereas LST(−)/LPA(+) dogs, in spite of increased IFN-γ, also showed increased interleukin-10 (IL-10) and transforming growth factor β (TGF-β) levels and the highest parasite load in lymph nodes. Low T cell proliferation under low parasite load suggested that L. infantum was not able to induce effective CMI in the early stage of infection. Altogether, genetic markers explained 87%, 16%, 15%, 11%, 0%, and 0% of phenotypic variance in TNF-α, TGF-β, LST, IL-10, IFN-γ, and LPA, respectively. GWAS showed that regions associated with TNF-α include the following genes: IL12RB1, JAK3, CCRL2, CCR2, CCR3, and CXCR6, involved in cytokine and chemokine signaling; regions associated with LST, including COMMD5 and SHARPIN, involved in regulation of NF-κB signaling; and regions associated with IL-10, including LTBP1 and RASGRP3, involved in T regulatory lymphocytes differentiation. These findings pinpoint chromosomic regions related to the cell-mediated response that potentially affect the clinical complexity and the parasite replication in canine L. infantum infection
Macrophage Polarization in the Skin Lesion Caused by Neotropical Species of Leishmania sp
Macrophages play important roles in the innate and acquired immune responses against Leishmania parasites. Depending on the subset and activation status, macrophages may eliminate intracellular parasites; however, these host cells also can offer a safe environment for Leishmania replication. In this sense, the fate of the parasite may be influenced by the phenotype of the infected macrophage, linked to the subtype of classically activated (M1) or alternatively activated (M2) macrophages. In the present study, M1 and M2 macrophage subsets were analyzed by double-staining immunohistochemistry in skin biopsies from patients with American cutaneous leishmaniasis (ACL) caused by L. (L.) amazonensis, L. (V.) braziliensis, L. (V.) panamensis ,and L. (L.) infantum chagasi. High number of M1 macrophages was detected in nonulcerated cutaneous leishmaniasis (NUCL) caused by L. (L.) infantum chagasi (M1=112±12, M2=43±12 cells/mm2). On the other side, high density of M2 macrophages was observed in the skin lesions of patients with anergic diffuse cutaneous leishmaniasis (ADCL) (M1=195±25, M2=616±114), followed by cases of localized cutaneous leishmaniasis (LCL) caused by L. (L.) amazonensis (M1=97±24, M2=219±29), L. (V.) panamensis (M1=71±14, M2=164±14), and L. (V.) braziliensis (M1=50±13, M2=53±10); however, low density of M2 macrophages was observed in NUCL. The data presented herein show the polarization of macrophages in skin lesions caused by different Leishmania species that may be related with the outcome of the disease