97 research outputs found
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
We aimed to evaluate computer-aided diagnosis (CADx) system for lung nodule
classification focusing on (i) usefulness of gradient tree boosting (XGBoost)
and (ii) effectiveness of parameter optimization using Bayesian optimization
(Tree Parzen Estimator, TPE) and random search. 99 lung nodules (62 lung
cancers and 37 benign lung nodules) were included from public databases of CT
images. A variant of local binary pattern was used for calculating feature
vectors. Support vector machine (SVM) or XGBoost was trained using the feature
vectors and their labels. TPE or random search was used for parameter
optimization of SVM and XGBoost. Leave-one-out cross-validation was used for
optimizing and evaluating the performance of our CADx system. Performance was
evaluated using area under the curve (AUC) of receiver operating characteristic
analysis. AUC was calculated 10 times, and its average was obtained. The best
averaged AUC of SVM and XGBoost were 0.850 and 0.896, respectively; both were
obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters
for achieving high AUC were obtained with fewer numbers of trials when using
TPE, compared with random search. In conclusion, XGBoost was better than SVM
for classifying lung nodules. TPE was more efficient than random search for
parameter optimization.Comment: 29 pages, 4 figure
First Results of Axion Dark Matter Search with DANCE
Axions are one of the well-motivated candidates for dark matter, originally
proposed to solve the strong CP problem in particle physics. Dark matter Axion
search with riNg Cavity Experiment (DANCE) is a new experimental project to
broadly search for axion dark matter in the mass range of . We aim to detect the rotational oscillation of
linearly polarized light caused by the axion-photon coupling with a bow-tie
cavity. The first results of the prototype experiment, DANCE Act-1, are
reported from a 24-hour observation. We found no evidence for axions and set
95% confidence level upper limit on the axion-photon coupling in . Although the bound did not exceed the current best
limits, this optical cavity experiment is the first demonstration of
polarization-based axion dark matter search without any external magnetic
field.Comment: 9 pages, 8 figure
Structural insights into tetraspanin CD9 function
Umeda, R., Satouh, Y., Takemoto, M. et al. Structural insights into tetraspanin CD9 function. Nat Commun 11, 1606 (2020). https://doi.org/10.1038/s41467-020-15459-
Displacement-noise-free interferometeric gravitational-wave detector using unidirectional neutrons with four speeds
For further gravitational wave (GW) detections, it is significant to invent a
technique to reduce all kinds of mirror displacement noise dominant at low
frequencies for ground-based detectors. The neutron displacement-noise-free
interferometer (DFI) is one of the tools to reduce all the mirror displacement
noise at lower frequencies. In this paper, we describe a further simplified
configuration of a neutron DFI in terms of neutron incidence direction. In the
new configuration, neutrons enter the interferometer with unidirectional
incidence at four speeds as opposed to two bidirectional incidences of opposite
directions at two speeds as reported previously. This simplification of the
neutron DFI is significant for proof-of-principle experiments
Predictive Value of Cetuximab-Induced Skin Toxicity in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and NECK
Background: Skin toxicity is a common adverse event during cetuximab (Cmab) treatment. However, few reports have investigated the correlation between skin toxicity and the efficacy of Cmab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN).Methods: We retrospectively reviewed 112 R/M SCCHN patients who received palliative chemotherapy with Cmab. Main eligibility criteria included primary disease in the oral cavity, hypopharynx, nasopharynx, oropharynx, or larynx; no prior history of EGFR-directed therapy; receipt of Cmab plus chemotherapy as first-line therapy for recurrent or metastatic disease; and follow-up for more than 90 days. We analyzed the time to first occurrence and time of maximum grade skin toxicity, and its predictive value with regard to treatment efficacy.Results: After a median follow-up of 393 days (range 109–1501 days), 105 (94%) and 20 (18%) patients had skin toxicity of any grade and grade 3, respectively. Among them, 8 patients with grade 3 acneiform rash, skin rash, or paronychia within 90 days after treatment initiation (“early skin toxicity”) had improved progression-free survival (PFS) (log-rank test, P = 0.045; 2-year PFS, 25.0 vs. 2.9%) and overall survival (OS) (log-rank test, P = 0.023, 2-year OS, 50.0 vs. 14.4%) compared with those with < grade 3 toxicity. A greater proportion of patients with early skin toxicity than patients without this toxicity could proceed with Cmab maintenance (88 vs. 44%, P = 0.021). Multivariate analysis identified early skin toxicity as an independent predictor of better PFS (hazard ratio [HR] = 0.363, 95% confidence interval [CI] 0.142–0.924, P = 0.034) and OS (HR = 0.187, 95% CI: 0.045–0.781, P = 0.022).Conclusion: Grade 3 Cmab-induced skin toxicity within 90 days was associated with better survival in R/M SCCHN. Effective rash management therefore seems necessary to realize the benefit of Cmab treatment
Structural insights into the HBV receptor and bile acid transporter NTCP
B型肝炎ウイルスの受容体“胆汁酸輸送体”の立体構造を解明. 京都大学プレスリリース. 2022-05-18.Roughly 250 million people are infected with hepatitis B virus (HBV) worldwide, and perhaps 15 million also carry the satellite virus HDV, which confers even greater risk of severe liver disease. Almost ten years ago the HBV receptor was identified as NTCP (sodium taurocholate co-transporting polypeptide), which interacts directly with the first 48 amino acid residues of the N-myristoylated N-terminal preS1 domain of the viral large (L) protein. Despite the pressing need for therapeutic agents to counter HBV, the structure of NTCP remains unsolved. This 349-residue protein is closely related to human apical sodium-dependent bile acid transporter (ASBT), another member of the solute carrier family SLC10. Crystal structures have been reported of similar bile acid transporters from bacteria, and these models with ten transmembrane helices are believed to resemble strongly both NTCP and ASBT. Using cryo-electron microscopy we have solved the structure of NTCP bound to an antibody, clearly showing the transporter has no equivalent to the first transmembrane helix of other SLC10 models, leaving the N-terminus exposed on the extracellular face. Comparison of the different structures indicates a common mechanism of bile acid transport, but the NTCP structure also displays a pocket formed by residues known to interact with preS1, presenting new and enticing opportunities for structure-based drug design
The Japanese space gravitational wave antenna; DECIGO
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future
Japanese space gravitational wave antenna. DECIGO is expected to open a new window of
observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing
various mysteries of the universe such as dark energy, formation mechanism of supermassive
black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of
three drag-free spacecraft, whose relative displacements are measured by a differential Fabry–
Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-
DECIGO first and finally DECIGO in 2024
DECIGO pathfinder
DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
- …