97 research outputs found

    Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization

    Full text link
    We aimed to evaluate computer-aided diagnosis (CADx) system for lung nodule classification focusing on (i) usefulness of gradient tree boosting (XGBoost) and (ii) effectiveness of parameter optimization using Bayesian optimization (Tree Parzen Estimator, TPE) and random search. 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of local binary pattern was used for calculating feature vectors. Support vector machine (SVM) or XGBoost was trained using the feature vectors and their labels. TPE or random search was used for parameter optimization of SVM and XGBoost. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost were 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. In conclusion, XGBoost was better than SVM for classifying lung nodules. TPE was more efficient than random search for parameter optimization.Comment: 29 pages, 4 figure

    First Results of Axion Dark Matter Search with DANCE

    Full text link
    Axions are one of the well-motivated candidates for dark matter, originally proposed to solve the strong CP problem in particle physics. Dark matter Axion search with riNg Cavity Experiment (DANCE) is a new experimental project to broadly search for axion dark matter in the mass range of 1017 eV<ma<1011 eV10^{-17}~\mathrm{eV} < m_a < 10^{-11}~\mathrm{eV}. We aim to detect the rotational oscillation of linearly polarized light caused by the axion-photon coupling with a bow-tie cavity. The first results of the prototype experiment, DANCE Act-1, are reported from a 24-hour observation. We found no evidence for axions and set 95% confidence level upper limit on the axion-photon coupling gaγ8×104 GeV1g_{a \gamma} \lesssim 8 \times 10^{-4}~\mathrm{GeV^{-1}} in 1014 eV<ma<1013 eV10^{-14}~\mathrm{eV} < m_a < 10^{-13}~\mathrm{eV}. Although the bound did not exceed the current best limits, this optical cavity experiment is the first demonstration of polarization-based axion dark matter search without any external magnetic field.Comment: 9 pages, 8 figure

    Structural insights into tetraspanin CD9 function

    Get PDF
    Umeda, R., Satouh, Y., Takemoto, M. et al. Structural insights into tetraspanin CD9 function. Nat Commun 11, 1606 (2020). https://doi.org/10.1038/s41467-020-15459-

    Displacement-noise-free interferometeric gravitational-wave detector using unidirectional neutrons with four speeds

    Full text link
    For further gravitational wave (GW) detections, it is significant to invent a technique to reduce all kinds of mirror displacement noise dominant at low frequencies for ground-based detectors. The neutron displacement-noise-free interferometer (DFI) is one of the tools to reduce all the mirror displacement noise at lower frequencies. In this paper, we describe a further simplified configuration of a neutron DFI in terms of neutron incidence direction. In the new configuration, neutrons enter the interferometer with unidirectional incidence at four speeds as opposed to two bidirectional incidences of opposite directions at two speeds as reported previously. This simplification of the neutron DFI is significant for proof-of-principle experiments

    Predictive Value of Cetuximab-Induced Skin Toxicity in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and NECK

    Get PDF
    Background: Skin toxicity is a common adverse event during cetuximab (Cmab) treatment. However, few reports have investigated the correlation between skin toxicity and the efficacy of Cmab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN).Methods: We retrospectively reviewed 112 R/M SCCHN patients who received palliative chemotherapy with Cmab. Main eligibility criteria included primary disease in the oral cavity, hypopharynx, nasopharynx, oropharynx, or larynx; no prior history of EGFR-directed therapy; receipt of Cmab plus chemotherapy as first-line therapy for recurrent or metastatic disease; and follow-up for more than 90 days. We analyzed the time to first occurrence and time of maximum grade skin toxicity, and its predictive value with regard to treatment efficacy.Results: After a median follow-up of 393 days (range 109–1501 days), 105 (94%) and 20 (18%) patients had skin toxicity of any grade and grade 3, respectively. Among them, 8 patients with grade 3 acneiform rash, skin rash, or paronychia within 90 days after treatment initiation (“early skin toxicity”) had improved progression-free survival (PFS) (log-rank test, P = 0.045; 2-year PFS, 25.0 vs. 2.9%) and overall survival (OS) (log-rank test, P = 0.023, 2-year OS, 50.0 vs. 14.4%) compared with those with &lt; grade 3 toxicity. A greater proportion of patients with early skin toxicity than patients without this toxicity could proceed with Cmab maintenance (88 vs. 44%, P = 0.021). Multivariate analysis identified early skin toxicity as an independent predictor of better PFS (hazard ratio [HR] = 0.363, 95% confidence interval [CI] 0.142–0.924, P = 0.034) and OS (HR = 0.187, 95% CI: 0.045–0.781, P = 0.022).Conclusion: Grade 3 Cmab-induced skin toxicity within 90 days was associated with better survival in R/M SCCHN. Effective rash management therefore seems necessary to realize the benefit of Cmab treatment

    Structural insights into the HBV receptor and bile acid transporter NTCP

    Get PDF
    B型肝炎ウイルスの受容体“胆汁酸輸送体”の立体構造を解明. 京都大学プレスリリース. 2022-05-18.Roughly 250 million people are infected with hepatitis B virus (HBV) worldwide, and perhaps 15 million also carry the satellite virus HDV, which confers even greater risk of severe liver disease. Almost ten years ago the HBV receptor was identified as NTCP (sodium taurocholate co-transporting polypeptide), which interacts directly with the first 48 amino acid residues of the N-myristoylated N-terminal preS1 domain of the viral large (L) protein. Despite the pressing need for therapeutic agents to counter HBV, the structure of NTCP remains unsolved. This 349-residue protein is closely related to human apical sodium-dependent bile acid transporter (ASBT), another member of the solute carrier family SLC10. Crystal structures have been reported of similar bile acid transporters from bacteria, and these models with ten transmembrane helices are believed to resemble strongly both NTCP and ASBT. Using cryo-electron microscopy we have solved the structure of NTCP bound to an antibody, clearly showing the transporter has no equivalent to the first transmembrane helix of other SLC10 models, leaving the N-terminus exposed on the extracellular face. Comparison of the different structures indicates a common mechanism of bile acid transport, but the NTCP structure also displays a pocket formed by residues known to interact with preS1, presenting new and enticing opportunities for structure-based drug design

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
    corecore