108 research outputs found

    Exploration of Genes Associated with Sponge Silicon Biomineralization in the Whole Genome Sequence of the Hexactinellid Euplectella curvistellata.

    Get PDF
    Silicatein is the first protein isolated from the silicon biominerals and characterized as constituent of the axial filament in the silica spicules of the demosponge Tethya aurantia, by significant sequence similarity with cathepsin L, an animal lysosomal protease, and as a catalyst of silica polycondensation at neutral pH and room temperature. This protein was then identified in a wide range of the class Demospongiae and in some species of the class Hexactinellida. Our attempt to isolate silicatein from the silica skeleton of Euplectella was unsuccessful, but instead we discovered glassin, a protein directing acceleration of silica polycondensation and sharing no significant relationship with any proteins including silicatein. The present study aims to verify the existence of silicatein by exploring the whole genome DNA sequence database of E. curvistellata with the sequence similarity search. Although we identified the sequences of glassin, cathepsin L and chitin synthetase, an enzyme synthesizing chitin, which has already been found in the silicon biominerals in E. aspergillum, silicatein failed to be identified. Our result indicates that silicatein is not essential for poriferan silicon biomineralization in the presence of glassin

    microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity

    Get PDF
    褐色脂肪細胞の燃焼を促す新たなメカニズムを解明 --体の熱産生にマイクロRNA-33が関与--. 京都大学プレスリリース. 2021-02-17.Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33−/− mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-β-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/f DBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress

    Suppression of mitochondrial oxygen metabolism mediated by the transcription factor HIF-1 alleviates propofol-induced cell toxicity

    Get PDF
    A line of studies strongly suggest that the intravenous anesthetic, propofol, suppresses mitochondrial oxygen metabolism. It is also indicated that propofol induces the cell death in a reactive oxygen species (ROS)-dependent manner. Because hypoxia-inducible factor 1 (HIF-1) is a transcription factor which is involved in cellular metabolic reprogramming by modulating gene expressions of enzymes including glycolysis pathway and oxygen utilization of mitochondria, we examined the functional role of HIF-1 activity in propofol-induced cell death. The role of HIF-1 activity on oxygen and energy metabolisms and propofol-induced cell death and caspase activity was examined in renal cell-derived RCC4 cells: RCC4-EV cells which lack von Hippel-Lindau protein (VHL) protein expression and RCC4-VHL cells, which express exogenous VHL, and in neuronal SH-SY5Y cells. It was demonstrated that HIF-1 is involved in suppressing oxygen consumption and facilitating glycolysis in cells and that the resistance to propofol-induced cell death was established in a HIF-1 activation-dependent manner. It was also demonstrated that HIF-1 activation by treatment with HIFα-hydroxylase inhibitors such as n-propyl gallate and dimethyloxaloylglycine, alleviated the toxic effects of propofol. Thus, the resistance to propofol toxicity was conferred by HIF-1 activation by not only genetic deletion of VHL but also exposure to HIFα-hydroxylase inhibitors

    MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons

    Get PDF
    Recent reports, including ours, have indicated that microRNA (miR)-33 located within the intron of sterol regulatory element binding protein (SREBP) 2 controls cholesterol homeostasis and can be a potential therapeutic target for the treatment of atherosclerosis. Here, we show that SPAST, which encodes a microtubule-severing protein called SPASTIN, was a novel target gene of miR-33 in human. Actually, the miR-33 binding site in the SPAST 3′-UTR is conserved not in mice but in mid to large mammals, and it is impossible to clarify the role of miR-33 on SPAST in mice. We demonstrated that inhibition of miR-33a, a major form of miR-33 in human neurons, via locked nucleic acid (LNA)-anti-miR ameliorated the pathological phenotype in hereditary spastic paraplegia (HSP)-SPG4 patient induced pluripotent stem cell (iPSC)-derived cortical neurons. Thus, miR-33a can be a potential therapeutic target for the treatment of HSP-SPG4

    General Anesthetics Inhibit Erythropoietin Induction under Hypoxic Conditions in the Mouse Brain

    Get PDF
    Background: Erythropoietin (EPO), originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS). EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF)-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. Methodology/Principal Findings: BALB/c mice were exposed to 10 % oxygen with isoflurane at various concentrations (0.10–1.0%). Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2a protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2a protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2a protein and EPO mRNA. Conclusions/Significance: Taken together, our results indicate that general anesthetics suppress activation of HIF-2 an

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore