30 research outputs found

    Duality, generalized Chern-Simons terms and gauge transformations in a high-dimensional curved spacetime

    Get PDF
    With two typical parent actions we have two kinds of dual worlds: i) one of which contains an electric as well as magnetic current, and ii) the other contains (generalized) Chern-Simons terms. All these fields are defined on a curved spacetime of arbitrary (odd) dimensions. A new form of gauge transformations is introduced and plays an essential role in defining the interaction with a magnetic monopole or in defining the generalized Chern-Simons terms.Comment: 10pages, Late

    A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating progressive motor neuron disease that affects people of all ethnicities. Approximately 90% of ALS cases are sporadic and thought to have multifactorial pathogenesis. To understand the genetics of sporadic ALS, we conducted a genome-wide association study using 1,173 sporadic ALS cases and 8,925 controls in a Japanese population. A combined meta-analysis of our Japanese cohort with individuals of European ancestry revealed a significant association at the ACSL5 locus (top SNP p = 2.97 × 10−8). We validated the association with ACSL5 in a replication study with a Chinese population and an independent Japanese population (1941 ALS cases, 3821 controls; top SNP p = 1.82 × 10−4). In the combined meta-analysis, the intronic ACSL5 SNP rs3736947 showed the strongest association (p = 7.81 × 10−11). Using a gene-based analysis of the full multi-ethnic dataset, we uncovered additional genes significantly associated with ALS: ERGIC1, RAPGEF5, FNBP1, and ATXN3. These results advance our understanding of the genetic basis of sporadic ALS

    発症早期ALS患者に対する超高用量メチルコバラミンの有効性・安全性について : ランダム化比較試験

    Get PDF
    Importance: Post hoc analysis in a phase 2/3 trial indicated ultra-high dose methylcobalamin slowed decline of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) total score at week 16 as well as at week 182, without increase of adverse events, in patients with amyotrophic lateral sclerosis (ALS) who were enrolled within 1 year from onset. Objective: To validate the efficacy and safety of ultra-high dose methylcobalamin for patients with ALS enrolled within 1 year of onset. Design: A multicenter, placebo-controlled, double-blind, randomized phase 3 trial with 12-week observation and 16-week randomized period, conducted from October 2017 to September 2019. Setting: Twenty-five neurology centers in Japan. Participants: Patients with ALS diagnosed within 1 year of onset by the updated Awaji criteria were initially enrolled. Of those, patients fulfilling the following criteria after 12-week observation were eligible for randomization: 1- or 2-point decrease in ALSFRS-R total score, a percent forced vital capacity over 60%, no history of noninvasive respiratory support and tracheostomy, and being ambulant. The target number was 64 in both methylcobalamin and placebo groups. Of 203 patients enrolled in the observation, 130 patients (age, 61.0 ± 11.7 years; female, 56) met the criteria and were randomly assigned through an electronic web-response system to methylcobalamin or placebo (65 for each). Of these, 129 patients were eligible for the full analysis set, and 126 completed the double-blind stage. Interventions: Intramuscular injection of methylcobalamin 50 mg or placebo twice weekly for 16 weeks. Main outcomes and measures: The primary endpoint was change in ALSFRS-R total score from baseline to week 16 in the full analysis set. Results: The least-squares mean difference in ALSFRS-R total score at week 16 of the randomized period was 1.97 points greater with methylcobalamin than placebo (−2.66 versus −4.63; 95% CI, 0.44–3.50; P = 0.012). The incidence of adverse events was similar between the two groups. Conclusions and relevance: Ultra-high dose methylcobalamin was efficacious in slowing functional decline and safe in the 16-week treatment period in ALS patients in the early stage and with moderate progression rate. Trial registration: UMIN-CTR Identifier: UMIN000029588 (umin.ac.jp/ctr); ClinicalTrials.gov Identifier: NCT03548311 (clinicaltrials.gov

    Configuring magnetoresistive sensor array for head-sized magnetic particle imaging

    No full text
    Magnetoresistive (MR) sensors offer a solution to enable unidirectional detection of sub-pT signal. Magnetic particle imaging (MPI) can benefit from this high sensitivity to challenge its operability under low excitation fields. Here, we built a prototype of brain MPI scanner by using MR sensor array to directly map stray fields of the magnetized magnetic nanoparticles. The array was a 13×13 matrix with 15 mm sensor pitch and installed at 100 mm apart from excitation coil with 200 mm in diameter. We magnetically compensated both the drive field and geomagnetism to position MR sensor at field-free environment. Preliminarily, we were able to detect a 37 mgFe ferrofluid sample at 50 mm apart from the array under field amplitudes up to 100 ?T/?0 at 10 kHz. The resulting noise level appears independent to the applied field, which becomes an advantage to further implement higher drive fields within magnetostimulation safety limits

    Constitutive activity of transient receptor potential vanilloid type 1 triggers spontaneous firing in nerve growth factor-treated dorsal root ganglion neurons of rats

    No full text
    Dorsal root ganglion (DRG) neurons cultured in the presence of nerve growth factor (NGF, 100 ng/ml) often show a spontaneous action potential. Underlying mechanisms of this spontaneous firing were examined using the patch clamp technique. The spontaneous firing in the on-cell configuration was abolished by a decrease in the Na+ concentration and by the TRPV1 antagonists capsazepine (10 μM) and BCTC (1 μM). These responses were accompanied by hyperpolarization of the resting potential. The holding current observed in neurons voltage clamped at –60 mV in the whole-cell configuration was significantly larger in the neurons that fired spontaneously, indicating that these neurons had an additional cation conductance that caused depolarization and triggered action potentials. The holding current in the firing neurons was decreased by extracellular Na+ reduction, capsazepine and BCTC. The amplitudes of the capsazepine- or BCTC-sensitive component of the holding current in the spontaneously firing neurons were ten times as large as those recorded in the other neurons showing no spontaneous firing. However, the amplitudes of the current responses to capsaicin (1 μM) were not different regardless of the presence of spontaneous firing or treatment with NGF. These results indicate that chronic NGF treatment of cultured DRG neurons in rats induces a constitutively active cation conductance through TRPV1, which depolarizes the neurons and triggers spontaneous action potentials in the absence of any stimuli. Since NGF in the DRG is reported to increase after nerve injury, this NGF-mediated regulation of TRPV1 may be a cause of the pathogenesis of neuropathic pain. Keywords: Action potential, Neuropathic pain, Patch clamp, Sensory neuro
    corecore