15 research outputs found

    Early earthquake detection capabilities of different types of future-generation gravity gradiometers

    Get PDF
    Since gravity propagates at the speed of light, gravity perturbations induced by earthquake deformation have the potential to enable faster alerts than the current earthquake early warning systems based on seismic waves. Additionally, for large earthquakes (M_w > 8), gravity signals may allow for a more reliable magnitude estimation than seismic-based methods. Prompt elastogravity signals induced by earthquakes of magnitude larger than 7.9 have been previously detected with seismic arrays and superconducting gravimeters. For smaller earthquakes, down to M_w ≃ 7, it has been proposed that detection should be based on measurements of the gradient of the gravitational field, in order to mitigate seismic vibration noise and to avoid the canceling effect of the ground motions induced by gravity signals. Here we simulate the five independent components of the gravity gradient signals induced by earthquakes of different focal mechanisms. We study their spatial amplitude distribution to determine what kind of detectors is preferred (which components of the gravity gradient are more informative), how detectors should be arranged, and how earthquake source parameters can be estimated. The results show that early earthquake detections, within 10 seconds of the rupture onset, using only the horizontal gravity strain components are achievable up to about 140 km distance from the epicenter. Depending on the earthquake focal mechanism and on the detector location, additional measurement of the vertical gravity strain components can enhance the detectable range by 10–20 km. These results are essential for the design of gravity-based earthquake early warning systems

    Precise sinusoidal signal extraction from noisy waveform in vibration calibration

    Full text link
    Precise extraction of sinusoidal vibration parameters is essential for the dynamic calibration of vibration sensors, such as accelerometers. However, several standard methods have not yet been optimized for large background noise. In this work, signal processing methods to extract small vibration signals from noisy data in the case of accelerometer calibration is discussed. The results show that spectral leakage degrades calibration accuracy. Three methods based on the use of a filter, window function, and numerical differentiation are investigated with theoretical calculations, simulations, and experiments. These methods can effectively reduce the contribution of the calibration system noise. The uncertainty of micro vibration calibration in the National Metrology Institute of Japan is reduced by two orders of magnitudes using the proposed methods. The theoretical analyses in this work can lay the foundation for the optimization of signal processing in vibration calibration, and can be applied to other dynamic calibration fields

    Early earthquake detection capabilities of different types of future-generation gravity gradiometers

    No full text
    International audienceSUMMARY Since gravity changes propagate at the speed of light, gravity perturbations induced by earthquake deformation have the potential to enable faster alerts than the current earthquake early warning systems based on seismic waves. Additionally, for large earthquakes (Mw > 8), gravity signals may allow for a more reliable magnitude estimation than seismic-based methods. Prompt elastogravity signals induced by earthquakes of magnitude larger than 7.9 have been previously detected with seismic arrays and superconducting gravimeters. For smaller earthquakes, down to Mw ≃ 7, it has been proposed that detection should be based on measurements of the gradient of the gravitational field, in order to mitigate seismic vibration noise and to avoid the cancelling effect of the ground motions induced by gravity signals. Here we simulate the five independent components of the gravity gradient signals induced by earthquakes of different focal mechanisms. We study their spatial amplitude distribution to determine what kind of detectors is preferred (which components of the gravity gradient are more informative), how detectors should be arranged and how earthquake source parameters can be estimated. The results show that early earthquake detections, within 10 s of the rupture onset, using only the horizontal gravity strain components are achievable up to about 140 km distance from the epicentre. Depending on the earthquake focal mechanism and on the detector location, additional measurement of the vertical gravity strain components can enhance the detectable range by 10–20 km. These results are essential for the design of gravity-based earthquake early warning systems
    corecore