105 research outputs found

    Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments : results of nitrate and sulfate labeling experiments

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 163, doi:10.3389/fmicb.2016.00163.Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much 15N or 34S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200–500 nm in diameter and co-occurred with possible endobionts, were labeled with 15N originated from 15N-labeled nitrate under anoxia and were labeled with both 15N and 34S under dysoxia. The labeling with 15N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions.This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Young Scientists B No. 22740340 and Scientific Research C No. 24540504 to HN), an Invitation Fellowship for Research in Japan to JB by Japan Society for the Promotion of Science (JSPS), the Robert W. Morse Chair for Excellence in Oceanography at WHOI to JB, and The Investment in Science Fund at WHOI to JB

    Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nomaki, H., Uejima, Y., Ogawa, N. O., Yamane, M., Watanabe, H. K., Senokuchi, R., Bernhard, J. M., Kitahashi, T., Miyairi, Y., Yokoyama, Y., Ohkouchi, N., & Shimanaga, M. Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses. Marine Ecology Progress Series, 622, (2019): 49-65, doi:10.3354/meps13053.Deep-sea hydrothermal vents host unique marine ecosystems that rely on organic matter produced by chemoautotrophic microbes together with phytodetritus. Although meiofauna can be abundant at such vents, the small size of meiofauna limits studies on nutritional sources. Here we investigated dietary sources of meio- and macrofauna at hydrothermal vent fields in the western North Pacific using stable carbon and nitrogen isotope ratios (δ13C, δ15N) and natural-abundance radiocarbon (Δ14C). Bacterial mats and Paralvinella spp. (polychaetes) collected from hydrothermal vent chimneys were enriched in 13C (up to -10‰) and depleted in 14C (-700 to -580‰). The δ13C and Δ14C values of dirivultid copepods, endemic to hydrothermal vent chimneys, were -11‰ and -661‰, respectively, and were similar to the values in the bacterial mats and Paralvinella spp. but distinct from those of nearby non-vent sediments (δ13C: ~-24‰) and water-column plankton (Δ14C: ~40‰). In contrast, δ13C values of nematodes from vent chimneys were similar to those of non-vent sites (ca. -25‰). Results suggest that dirivultids relied on vent chimney bacterial mats as their nutritional source, whereas vent nematodes did not obtain significant nutrient amounts from the chemolithoautotrophic microbes. The Δ14C values of Neoverruca intermedia (vent barnacle) suggest they gain nutrition from chemoautotrophic microbes, but the source of inorganic carbon was diluted with bottom water much more than those of the Paralvinella habitat, reflecting Neoverruca’s more distant distribution from active venting. The combination of stable and radioisotope analyses on hydrothermal vent organisms provides valuable information on their nutritional sources and, hence, their adaptive ecology to chemosynthesis-based ecosystems.We are grateful to the crews and scientists of the R/V ‘Natsushima’ and the ROV ‘Hyper-Dolphin’ of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) during the NT12-10, NT13-09 and NT14-06 cruises, and the R/V ‘Kaimei’ and the KM-ROV of JAMSTEC during the KM-ROV training cruise. We thank Yuki Iwadate for her help on sample preparations and 2 anonymous reviewers and the editor, who provided helpful comments on an earlier version of this manuscript. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Scientific Research C 26440246 to M.S.), the Japan Society for the Promotion of Science (Invitational fellowships for research in Japan, S14032 to J.M.B.), the WHOI Robert W. Morse Chair for Excellence in Oceanography, and The Investment in Science Fund at WHOI

    Abyssal fauna, benthic microbes, and organic matter quality across a range of trophic conditions in the western Pacific ocean

    Get PDF
    Abstract The abyssal plain covers more than half the Earth's surface. The main food source to abyssal ecosystems is phytodetritus, which originates from phytoplankton in the surface ocean, and thus its variability to the seafloor is a major driver of abyssal ecosystem biomass and functioning. In this study, we conducted a comparative survey on organic matter (OM) quality and quantity in abyssal plain sediments and examined the distributions of megafauna, macrofauna, meiofauna, prokaryotes, and viruses in eutrophic (39°N), oligotrophic (1°N), and ultra-oligotrophic (12°N) areas of the western Pacific. We also analyzed stable carbon and nitrogen isotopic compositions of organisms at 39°N and 1°N to assess differences in benthic abyssal food-web structures with contrasting trophic states. Sediments collected at 39°N presented highest concentrations of total organic carbon (TOC) and labile OM, and high diffusive oxygen uptake rates. By contrast, the lowest values were found at 12°N. Vertical distributions of sediment macrofauna, meiofauna, and prokaryotes matched with labile OM profiles. There were prominent differences in abundances of macro- and megafauna among stations with different OM fluxes, whereas the abundance of meiofauna and prokaryotes showed smaller differences among stations. Such differences could be explained by higher turnover rates of smaller organisms. Food-web structures of abyssal plains are likely influenced by both the type and size of primary producers in surface ocean. Our results underscore the crucial importance of OM fluxes and their compositions to the abundances and vertical profiles of labile OM and benthic biota in abyssal ecosystems

    A new method for acquiring images of meiobenthic images using the FlowCAM

    No full text
    The purpose of this study was to develop a new method for investigating sediment-inhabiting meiobenthos using the Flow Cytometer And Microscope (FlowCAM). Meiobenthos are widely recognized as a useful indicator for assessing the effects of anthropogenic and natural disturbances in both shallow and deep ocean ecosystems. These small benthic invertebrates are traditionally investigated by individually counting and identifying specimens under a microscope, which is labor intensive and time consuming. However, FlowCAM, which was originally developed to semiautomatically analyze microplankton, has the potential to resolve these challenges. Meiobenthic specimens were extracted from sediment using the centrifugal separation method and were then pipetted into the FlowCAM system and imaged. The images were then used to classify and count the specimens at high taxonomic levels to verify the effectiveness of this method compared with traditional methods. We found that FlowCAM system: • Enabled sufficient meiobenthic images to be obtained to allow the identification and classification of specimens at high taxonomic levels. • Obtained comparable numbers of individuals to traditional methods. • Has the potential to rapidly process large the volumes of meiobenthos samples that are required when monitoring seasonal and spatial variation in ocean ecosystems and conducting long-term environmental impact assessments. Method name: FlowCAM method for identifying and quantifying meiobenthos, Keywords: Meiobenthos, FlowCAM, Environmental monitoring, Seasonal variatio
    corecore