5 research outputs found

    Non-invasive ventilation for acute hypoxemic respiratory failure, including COVID-19

    No full text
    Optimal initial non-invasive management of acute hypoxemic respiratory failure (AHRF), of both coronavirus disease 2019 (COVID-19) and non-COVID-19 etiologies, has been the subject of significant discussion. Avoidance of endotracheal intubation reduces related complications, but maintenance of spontaneous breathing with intense respiratory effort may increase risks of patients’ self-inflicted lung injury, leading to delayed intubation and worse clinical outcomes. High-flow nasal oxygen is currently recommended as the optimal strategy for AHRF management for its simplicity and beneficial physiological effects. Non-invasive ventilation (NIV), delivered as either pressure support or continuous positive airway pressure via interfaces like face masks and helmets, can improve oxygenation and may be associated with reduced endotracheal intubation rates. However, treatment failure is common and associated with poor outcomes. Expertise and knowledge of the specific features of each interface are necessary to fully exploit their potential benefits and minimize risks. Strict clinical and physiological monitoring is necessary during any treatment to avoid delays in endotracheal intubation and protective ventilation. In this narrative review, we analyze the physiological benefits and risks of spontaneous breathing in AHRF, and the characteristics of tools for delivering NIV. The goal herein is to provide a contemporary, evidence-based overview of this highly relevant topic

    Remdesivir plus Dexamethasone in COVID-19: A cohort study of severe patients requiring high flow oxygen therapy or non-invasive ventilation.

    No full text
    IntroductionRemdesivir and Dexamethasone represent the cornerstone of therapy for critically ill patients with acute hypoxemic respiratory failure caused by Coronavirus Disease 2019 (COVID-19). However, clinical efficacy and safety of concomitant administration of Remdesivir and Dexamethasone (Rem-Dexa) in severe COVID-19 patients on high flow oxygen therapy (HFOT) or non-invasive ventilation (NIV) remains unknown.Materials and methodsProspective cohort study that was performed in two medical Intensive Care Units (ICUs) of a tertiary university hospital. The clinical impact of Rem-Dexa administration in hypoxemic patients with COVID-19, who required NIV or HFOT and selected on the simplified acute physiology score II, the sequential organ failure assessment score and the Charlson Comorbidity Index score, was investigated. The primary outcome was 28-day intubation rate; secondary outcomes were end-of-treatment clinical improvement and PaO2/FiO2 ratio, laboratory abnormalities and clinical complications, ICU and hospital length of stay, 28-day and 90-day mortality.ResultsWe included 132 patients and found that 28-day intubation rate was significantly lower among Rem-Dexa group (19.7% vs 48.5%, pConclusionsIn COVID-19 critically ill patients receiving HFO or NIV, 28-day intubation rate was lower in patients who received Rem-Dexa and this finding corresponded to lower end-of-treatment clinical improvement. The individual contribution of either Remdesevir or Dexamethasone to the observed clinical effect should be further investigated

    Physiological effects of awake prone position in acute hypoxemic respiratory failure

    No full text
    Abstract Background The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. Methods Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2  0.99) and ΔP L (9 [7–11] cmH2O vs. 8 [5–9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units−3 [4–11] vs. 6 [4–9], p = 0.05; 0.53 s [0.32–61] vs. 0.40 [0.37–0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414–8547] vs. 1456 [959–2420], p = 0.002) and promoted V T distribution towards dorsal lung regions without affecting V T size and lung compliance: this generated lower dynamic strain (0.21 [0.16–0.24] vs. 0.38 [0.30–0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7–57] of V T in prone vs. 31% [14–55] in supine position, p > 0.99). Conclusions Prone position improves oxygenation, increases EELI and promotes V T distribution towards dependent lung regions without affecting V T size, ΔP L, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔP ES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔP ES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔP ES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017

    Long-term outcome of COVID-19 patients treated with helmet noninvasive ventilation vs. high-flow nasal oxygen: a randomized trial

    No full text
    Abstract Background Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. Methods In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. Results Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47–77] of predicted vs. 80% [71–88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53–70] vs. 80 [70–83], p = 0.01). Conclusions In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 202
    corecore